
Devops’n the Operating System!
!

John Willis  
Director of Ecosystem Development!

Docker, Inc.  

@botchagalupe

• a.k.a. John Willis

• 35 Years in IT Operations

• Exxon, Canonical, Chef, Enstratius,
Socketplane

• Devopsdays Core Organizer

• 35 Official Devopsdays

• Devopscafe on iTunes

• Organizer of Devops Enterprise Summit

Devops

Devops is a movement motivated
to turn human capital into high

performance organizational
capital.

First Generation
Configuration Management

Tivoli - Configuration Manager
BMC - Bladelogic
HP - Opsware

Operations is a competitive advantage… (Secret Sauce for Startups!)

Second Generation
Configuration Management

Cfengine
Puppet
Chef

History of Virtualization
• IBM 360/370 (1960/1970)
• CHROOT - Version 7 Unix 1979 (Bell Labs) and BSD in 1982 (Berkley)
• VMware (1998)
• FreeBSD Jails 2000
• XEN 2003
• Solaris Zones 2004
• OpenVZ 2005

• Amazon Web Services 2006
• BTRFS (Oracle) 2007
• Namespaces 2007
• Cgroups (Google) 2007
• KVM 2007
• AIX LPARS (IBM) 2007
• Drawbridge (2008)
• Hyper-V (2008)
• Linux Containers - LXC (Parelles, IBM, Google) 2008
• Docker (Dotcloud Inc) 2013
• Rocket (Coreos) 2014

Virtualization

• Type 1 Virtualization
• VMware ESX, XEN, Hyper-V
• (indirectly Amazon, Rackspace, etc..)  

• Type 2 Virtualization
• KVM, Virtualbox, QEMU, VMware Workstation
• (indirectly Vagrant) 

• OS Level Virtualization
• OpenVZ, LXC, Docker

http://www.slideshare.net/BodenRussell/realizing-linux-containerslxc

http://www.slideshare.net/BodenRussell/realizing-linux-containerslxc

Why OS Level Virtualization

• Provision in milliseconds
• Near bare metal runtime performance
• VM-like agility – it’s still “virtualization”
• Lightweight – Just enough Operating System (JeOS)
• Supported with modern Linux kernel
• Growing in popularity

Introducing Containers

• Each root file system is called a container
• Each container also has its own

– Processes
– Memory
– Devices
– Network stack

16

Containerization uses the kernel on the host operating system
to run multiple root file systems

Docker?

• Isolation

• Lightweight

• Simplicity

• Workflow

• Community

http://www.slideshare.net/BodenRussell/realizing-linux-containerslxc

http://www.slideshare.net/BodenRussell/realizing-linux-containerslxc

Docker and the Linux Kernel
• Docker Engine is the

program that enables
containers to be distributed
and run

• Docker Engine uses Linux
Kernel namespaces and
control groups

• Namespaces give us the
isolated workspace

19

Docker Client and Daemon
• Client / Server architecture
• Client takes user inputs and

sends them to the daemon
• Daemon runs and distributes

containers
• Client and daemon can run on

the same host or on different
hosts

• CLI client and GUI (Kitematic)

20

Client

Understanding image layers
• An image is a collection of files and

some meta data
• Images are comprised of multiple layers
• A layer is also just another image
• Each image contains software you want

to run
• Every image contains a base layer
• Docker uses a copy on write system
• Layers are read only

!

• COW/Union Filesystems (AUFS/BTRFS)

21

Dockerfile Examples

Dockerfile Examples

Socketplane Example

Docker and Windows
• Azure  

• Azure Container Service
• Swarm Integration

!

• Windows Server 2016  

• Windows Server Containers
• Hyper-V Containers

@bglpe

Immutable Infrastructure

“The least-cost way to ensure that the behavior of any
two hosts will remain completely identical is always to

implement the same changes in the same order on both
hosts.”

Immutable Matters

Management Methods

• Divergence

• Convergence

• Congruence

Immutable Delivery

Immutable Infrastructure

Enter Unikernels

Unikernels are specialized virtual machine
images complied from the modular stack
of application code, system libraries and
configuration.

Enter Unikernels

Unikernels

Unikernels

https://queue.acm.org/detail.cfm?id=2566628

https://queue.acm.org/detail.cfm?id=2566628

Unikernels

https://queue.acm.org/detail.cfm?id=2566628

https://queue.acm.org/detail.cfm?id=2566628

Unikernels

http://rumpkernel.org/

http://rumpkernel.org/

Why Unikernels
• Performance

• user-kernel context switches
• instantiation times
• Memory footprint

• Security
• less attack surface
• No known architecture patterns  

• Fine-grained optimisation
• as unikernels are constructed through a coherent compiler tool-chain, whole-

system optimisation can be carried out across device drivers and application logic,
potentially improving specialisation further

Enter Unikernels

Part of this is a numbers game – to run a reasonable
system you might need to run 50 different services, and
install 200 packages on every host. An attacker has to
compromise just one of those to win - Gareth Rushgrove

Unikernel Examples

• DNS Server 446 KB
• Web Server 674 KB
• OVS Switch 393 KB

Unikernel Opportunities
• Composition and Orchestration
• Logging and Monitoring
• Networking
• Debugging
• Forces Immutability

Unikernels

john.willis@docker.com
@botchagalupe
http://ow.ly/Xt2ro

mailto:john.willis@docker.com
http://ow.ly/Xt2ro

