

SCALE 14X

The Bare-Metal Hypervisor as a Platform for
Innovation

By Russell Pavlicek

Xen Project Evangelist

rcpavlicek@yahoo.com

@RCPavlicek

mailto:rcpavlicek@yahoo.com

About the Old, Fat Geek Up Front

• Linux user since 1995; became a Linux advocate immediately

• Delivered many early talks on Open Source Advocacy

• Former Open Source columnist for Infoworld, Processor magazines

• Former weekly panelist on “The Linux Show”

• Wrote one of the first books on Open Source: Embracing Insanity:
Open Source Software Development

• 30 years in the industry; 20+ years in software services consulting

• Recently Evangelist for the Xen Project (until tomorrow; now looking
for other opportunities)

• Over 100 FOSS talks delivered; over 200 FOSS pieces published

About Innovation...

• A favorite buzzword for marketing purposes

• Many things in our industry labeled
“Innovation” are nothing more than hackneyed
placid tripe

• Innovation calls for thinking of the world in a
different way and seeing it come to life

• Simply changing the shade of lipstick on a pig
does not qualify

About Innovation...

• Real innovation can borrow from the known to
create the unknown

• Many innovations are reassemblies of known
objects in a new way
– Example: many cloud concepts resemble similar

concepts in mainframes, but they've been
reapplied to a multi-server environment

– But the net result needs to be something
significantly different than what existed before

Some of the More Interesting Advances

• Xen Automotive: the effort to craft an embedded
automotive infotainment system

• Realtime virtualization: work to facilitate applications
which need realtime processing

• ARM-based hypervisor: enabling a new breed of
applications, from servers to cell phones, on the ARM
architecture

• MirageOS and other unikernel systems: creating
highly-dense farms of ultra-small and secure cloud
appliances

But First...

What exactly is a “Bare-Metal Hypervisor”?

Hypervisor Architectures

Type 1: Bare metal Hypervisor
A pure Hypervisor that runs directly on the
hardware and hosts Guest OS’s.

Provides partition isolation +
reliability,

higher security

Provides partition isolation +
reliability,

higher security

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMUDevice Drivers/ModelsDevice Drivers/Models

VMnVMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Hypervisor Architectures

Type 1: Bare metal Hypervisor
A pure Hypervisor that runs directly on the
hardware and hosts Guest OS’s.

Type 2: OS ‘Hosted’
A Hypervisor that runs within a Host OS and
hosts Guest OS’s inside of it, using the host
OS services to provide the virtual environment.

Provides partition isolation +
reliability,

higher security

Provides partition isolation +
reliability,

higher security

Low cost, no additional drivers
Ease of use & installation

Low cost, no additional drivers
Ease of use & installation

Host HWHost HW
Memory CPUsI/O

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor
SchedulerScheduler

MMUMMUDevice Drivers/ModelsDevice Drivers/Models

VMnVMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Host OSHost OS

Device DriversDevice Drivers
Ring-0 VM Monitor
“Kernel “
Ring-0 VM Monitor
“Kernel “

VMn
VMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

User
Apps
User
Apps

User-level VMMUser-level VMM

Device ModelsDevice Models

Xen Project: Type 1 with a Twist

Type 1: Bare metal Hypervisor

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMUDevice Drivers/ModelsDevice Drivers/Models

VMnVMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Xen Project: Type 1 with a Twist

Type 1: Bare metal Hypervisor

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMUDevice Drivers/ModelsDevice Drivers/Models

VMnVMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor

VMn
VMn

VM1
VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Xen Project Architecture

SchedulerScheduler MMUMMU

Xen Project: Type 1 with a Twist

Type 1: Bare metal Hypervisor

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor SchedulerScheduler

MMUMMUDevice Drivers/ModelsDevice Drivers/Models

VMnVMn

VM1VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Host HWHost HW
Memory CPUsI/O

HypervisorHypervisor

VMn
VMn

VM1
VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Xen Project Architecture

SchedulerScheduler MMUMMU

Control domain
(dom0)
Control domain
(dom0)

DriversDrivers

Device ModelsDevice Models

Linux & BSDLinux & BSD

Some Bare-Metal Advantages

• What are the advantages of a Bare-Metal Hypervisor?
– Density: It's thin

• Excellent for supporting very small workloads

– Scalability: It can support huge numbers of VMs
• Terrific for highly dense workloads

– Security: No host OS
• It has no host OS layer to attack

– Scheduling: Can use dedicated scheduler
• Needed for specialized workload profiles where a host OS scheduler just won't

do

– Paravirtualization: Simplified interface
• Easier to code to when no OS is present

• And now some of the innovations they enable...

#1: Xen Automotive

• A subproject of the Xen Project

• Proposed by community member GlobalLogic

• Support for infotainment systems (for now...)

• Eliminates multiple discreet systems needing
sourcing, installation, and testing

• ARM-based

Automotive Challenges

• Soft-Real-time support

• Hard-Real-time support

• GPU virtualization

• Other co-processor (DSP, IPU, etc.)

• Certification

• Driver support for Android, e.g. Backend ION memory
allocator and Linux User Space Device Drivers for
Graphics, Sound, USB, Giros, GPS, etc.

• Driver support for operating systems such as QNX and
other guest operating systems that are relevant for these
use-cases

A Focused Hypervisor

• Automotive requires extreme focus

• Simply repurposing a server-based hypervisor
won't cut it

• A Bare-Metal hypervisor can add and modify
pieces as needed
– There is no legacy Host Operating System to be

accommodated

– Bare-Metal can do what the situation requires

#2: Realtime Virtualization

• Support for Xen Automotive and beyond

• RT-Xen

• Streaming video, etc. cannot wait for next
time slice

• Leverages a custom scheduler

Custom Schedulers

• Type 2 (Hosted) Hypervisors use the scheduler of
the host (e.g., Linux)
– That scheduler is designed for the host operating

system, not for special needs

• Type 1 (Bare Metal) Hypervisors use schedulers
designed for the needs of the hypervisor itself
– It is possible to change the scheduler to meet the

needs of the hypervisor

– That's the way to handle Realtime Scheduling

A Scheduler for Every Need

• Current schedulers in Xen Project:
– Credit

• General Purpose

• Default scheduler in 4.5

– Credit2
• Optimized for low latency & high VM density

• Currently Experimental

• Expected to become supported and default in future

A Scheduler for Every Need

• Current schedulers in Xen Project (continued):
– RTDS

• Soft & Firm Realtime scheduler

• Multicore
• Currently Experimental
• Embedded, Automotive, Graphics, Gaming in the Cloud

– ARINC 653
• Hard Realtime
• Single Core

• Currently Experimental
• Avionics, Drones, Medical

A Scheduler for Every Need

• Past schedulers in Xen Project:
– Borrowed Virtual Time

– Atropos

– Round Robin

– SEDF (removed in Xen Project 4.6)

• For more information:
– http://wiki.xenproject.org/wiki/Xen_Project_Schedulers

http://wiki.xenproject.org/wiki/Xen_Project_Schedulers

#3: ARM-based Hypervisor

• ARM expanding from handhelds to
servers

• Virtualization extensions added to ARM V7

• Architecture is hand-in-glove fit for Bare-
Metal hypervisor

• No mode changes means greater speed
and security

ARM SOCARM SOC

Xen + ARM = a perfect Match

ARM Architecture Features for Virtualization ARM Architecture Features for Virtualization

Hypervisor mode : EL2

Kernel mode : EL1

User mode : EL0

GIC
v2

GIC
v2GTGT

2
stage
MMU

2
stage
MMU

I/O

Device Tree describes …

Hypercall Interface HVCHypercall Interface HVC

ARM SOCARM SOC ARM Architecture Features for Virtualization ARM Architecture Features for Virtualization

EL2

EL1

EL0

GIC
v2

GIC
v2GTGT

2
stage
MMU

2
stage
MMU

I/O

Device Tree describes …

HVCHVC

Xen + ARM = a perfect Match

Xen HypervisorXen Hypervisor

ARM SOCARM SOC ARM Architecture Features for Virtualization ARM Architecture Features for Virtualization

EL2

EL1

EL0

GIC
v2

GIC
v2GTGT

2
stage
MMU

2
stage
MMU

I/O

Device Tree describes …

HVCHVC

Xen + ARM = a perfect Match

Xen HypervisorXen Hypervisor

Any Xen Guest VM (including Dom0)Any Xen Guest VM (including Dom0)

KernelKernel

User SpaceUser Space

HVCHVC

ARM SOCARM SOC ARM Architecture Features for Virtualization ARM Architecture Features for Virtualization

EL2

EL1

EL0

GIC
v2

GIC
v2GTGT

2
stage
MMU

2
stage
MMU

I/O

Device Tree describes …

HVCHVC

Xen + ARM = a perfect Match

Xen HypervisorXen Hypervisor

Dom0
only

Dom0
only

Any Xen Guest VM (including Dom0)Any Xen Guest VM (including Dom0)

KernelKernel

User SpaceUser Space

I/O

PV
back

PV
front

I/O

HVCHVC

Where Will an ARM Hypervisor Play?

• You name it...
– Cell phones

• Multiple personalities are possible

– Embedded systems
• Automotive is just the beginning; Trains are already here!

– Internet of Things (IoT)
• Lots of little things means lots of responses needed

– Servers
• Lower power footprint
• Real green technology

#4: The Unikernel

• Super-small VMs

• Quick booting

• Enhanced security

• Easy deployment

• Enables transient services
– Services that appear when needed and

disappear when done

The Cloud We Know

• Field of innovation is in the orchestration
– The Cloud Engine is paramount (OpenStack, CloudStack, etc.)

– Workloads adapted to the cloud strongly resemble their non-
cloud predecessors

• Some basic adaptations to facilitate life in the cloud, but basically the
same stuff that was used before the cloud

• Applications with full stacks (operating system, utilities, languages, and
apps) which could basically run on hardware, but are run on VMs
instead.

• VMs are beefy; large memory footprint, slow to start up

• It all works, but its not overly efficient

• 10s of VMs per physical host

The Next Generation Cloud

• Turning the scrutiny to the workloads
– Should be easier to deploy and manage

– Smaller footprint, removing unnecessary
duplication

– Faster startup

– Transient microservices

– Higher levels of security

– 1000s of VMs per host

The New Stuff: Docker & Containers

• Makes deployment easier

• Smaller footprint by leveraging kernel of host

• Less memory needed to replicate shared kernel
space

• Less disk needed to replicate shared
executables

• Really fast startup times

• Higher number of VMs per host

Docker Downsides

• Improvements, yes; but not without issues
– Can't run any payload that can't use host kernel

– Potential limits to scaleability
• Linux not really optimized for 1000s of processes

– Security
• Security is a HUGE issue in clouds

• Still working on security mechanisms
• Will users employ the security mechanisms or pick the quick-

and-easy deployment which has made Containers popular?

The Unikernel: A Real Cloud Concept

• Very small

• Very efficient

• Very quick to boot

• And very, VERY secure!

• It's a Green (energy) technology which saves you
green (cash); extremely important to foster adoption

• Many unikernels already exist, including Mini-OS and
MirageOS, a Xen Project Incubator Project

What is a Unikernel? From MirageOS

Unikernel Approach: MirageOS

Unikernel Approach: MirageOS

Unikernel Approach: MirageOS

Unikernel Concepts

• Use just enough to do the job
– No need for multiple users; one VM per user

– No need for a general purpose operating system
– No need for utilities
– No need for a full set of operating system functions

• Lean and mean
– Minimal waste

– Tiny size

Unikernel Concepts

• Similar to an embedded application
development environment
– Limited debugging available for deployed

production system

– Instead, system failures are reproduced and
analyzed on a full operating system stack and then
encapsulated into a new image to deploy

– Tradeoff is required for ultralight images

What Do the Results Look Like?

• MirageOS examples:
– DNS Server: 449 KB

– Web Server: 674 KB

– OpenFlow Learning Switch: 393 KB

• LING metrics:
– Boot time to shell in under 100ms

– Erlangonxen.org memory usage: 8.7 MB

• ClickOS:
– Network devices processing >5 million pkt/sec

– 6 MB memory with 30 ms boot time

What About Security?

• Type-Safe Solution Stack
– Can be certified
– Certification is crucial for certain highly critical

tasks, like airplane fly-by-wire control systems

• Image footprints are unique to the image
– Intruders cannot rely on always finding certain

libraries
– No utilities to exploit, no shell to manipulate

What's Out There Right Now?

• MirageOS, from the Xen Project Incubator

• HaLVM, from Galois

• LING, from Erlang-on-Xen

• ClickOS, from NEC Europe Labs

• OSv, from Cloudius Systems

• Rumprun, from the Rump Kernel Project

• And that's just the beginning...

How Does Xen Project Enable Unikernels?

• No Host OS means it's lean and mean
– A tiny VM can sit on a thin hypervisor layer on the

hardware

– Attack surface is small

– Scale out support
• Can currently support about 600 concurrent VMs per host

without losing performance

• Current target: 2000-3000 concurrent VMs per host

– Enhanced scheduler (Credit2)

– ARM as an option

Innovation: Is This All?

• By no means!

• The list of other subprojects & capabilities
continues to grow:
– Virtualized GPUs

– Enhanced NUMA

– COLO: Coarse-grained lockstepping of VMs

– Native VMware VMDK support

– And so on...

• http://xenproject.org/users/innovations.html

http://xenproject.org/users/innovations.html

In Review...

• Some advantages of a Bare-Metal Hypervisor
– Density: It's thin

• Excellent for supporting very small workloads

– Scalability: It can support huge numbers of VMs
• Terrific for highly dense workloads

– Security: No host OS
• It has no host OS layer to attack

– Scheduling: Can use dedicated scheduler
• Needed for specialized workload profiles where a host OS scheduler

just won't do

– Paravirtualization: Simplified interface
• Easier to code to when no OS is present

The Xen Project Difference

• Tomorrow's workloads are not yesterday's
workloads
– If your hypervisor is just focused on yesterday's

payloads, it is suffering from planned obsolescence

– Select a hypervisor which is innovating – and Open
Source

• Xen Project is busy enabling the next
generation in virtualization

Questions?

rcpavlicek@yahoo.com

Twitter: @RCPavlicek

Actively looking for a new opportunity

This presentation is available in the Presentations Section of
XenProject.org

mailto:rcpavlicek@yahoo.com

Basic Xen Project Concepts

47

Control domain
(dom0)
Control domain
(dom0)

Host HWHost HW

VMn
VMn

VM1
VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Memory CPUsI/O

Console
Interface to the outside

world
•

Control Domain aka
Dom0
• Dom0 kernel with drivers

Xen Management Toolstack
•

Guest Domains
• Your apps
•

Driver/Stub/Service
Domain(s)

A “driver, device model or
control service in a box”

De-privileged and isolated
Lifetime: start, stop, kill

Dom0 KernelDom0 Kernel

HypervisorHypervisorSchedulerScheduler MMUMMU XSMXSM

Trusted Computing Base

http://wiki.xen.org/xenwiki/XenDom0Kernels

Basic Xen Project Concepts: Toolstack+

48

Control domain
(dom0)
Control domain
(dom0)

Host HWHost HW

VMn
VMn

VM1
VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Console

Memory CPUsI/O

Dom0 KernelDom0 Kernel

ToolstackToolstack

HypervisorHypervisorSchedulerScheduler MMUMMU XSMXSM

Console
• Interface to the outside

world
•

Control Domain aka
Dom0
• Dom0 kernel with drivers
• Xen Management Toolstack
•

Guest Domains
• Your apps
•

Driver/Stub/Service
Domain(s)

A “driver, device model or
control service in a box”

De-privileged and isolated
Lifetime: start, stop, kill

Trusted Computing Base

http://wiki.xen.org/xenwiki/XenDom0Kernels

Basic Xen Project Concepts: Disaggregation

49

Control domain
(dom0)
Control domain
(dom0)

Host HWHost HW

VMn
VMn

VM1
VM1

VM0VM0

Guest OS
and Apps
Guest OS
and Apps

Console

Memory CPUsI/O

One or more
driver, stub or
service domains

One or more
driver, stub or
service domains

Dom0 KernelDom0 Kernel

ToolstackToolstack

HypervisorHypervisorSchedulerScheduler MMUMMU XSMXSM

Console
• Interface to the outside

world
•

Control Domain aka
Dom0
• Dom0 kernel with drivers
• Xen Management Toolstack
•

Guest Domains
• Your apps
•

Driver/Stub/Service
Domain(s)
• A “driver, device model or

control service in a box”
• De-privileged and isolated
• Lifetime: start, stop, kill

Trusted Computing Base

http://wiki.xen.org/xenwiki/XenDom0Kernels

