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About the Old, Fat Geek Up Front

• Linux user since 1995; became a Linux advocate immediately

• Delivered many early talks on Open Source Advocacy

• Former Open Source columnist for Infoworld, Processor magazines

• Former weekly panelist on “The Linux Show”

• Wrote one of the first books on Open Source: Embracing Insanity: 
Open Source Software Development

• 30 years in the industry; 20+ years in software services consulting

• Recently Evangelist for the Xen Project (until tomorrow; now looking 
for other opportunities)

• Over 100 FOSS talks delivered; over 200 FOSS pieces published



  

About Innovation...

• A favorite buzzword for marketing purposes

• Many things in our industry labeled 
“Innovation” are nothing more than hackneyed 
placid tripe

• Innovation calls for thinking of the world in a 
different way and seeing it come to life

• Simply changing the shade of lipstick on a pig 
does not qualify



  

About Innovation...

• Real innovation can borrow from the known to 
create the unknown

• Many innovations are reassemblies of known 
objects in a new way
– Example: many cloud concepts resemble similar 

concepts in mainframes, but they've been 
reapplied to a multi-server environment

– But the net result needs to be something 
significantly different than what existed before



  

Some of the More Interesting Advances

• Xen Automotive: the effort to craft an embedded 
automotive infotainment system

• Realtime virtualization: work to facilitate applications 
which need realtime processing

• ARM-based hypervisor: enabling a new breed of 
applications, from servers to cell phones, on the ARM 
architecture

• MirageOS and other unikernel systems: creating 
highly-dense farms of ultra-small and secure cloud 
appliances



  

But First...

What exactly is a “Bare-Metal Hypervisor”?
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Some Bare-Metal Advantages

• What are the advantages of a Bare-Metal Hypervisor?
– Density: It's thin

• Excellent for supporting very small workloads

– Scalability: It can support huge numbers of VMs
• Terrific for highly dense workloads

– Security: No host OS
• It has no host OS layer to attack 

– Scheduling: Can use dedicated scheduler
• Needed for specialized workload profiles where a host OS scheduler just won't 

do

– Paravirtualization: Simplified interface
• Easier to code to when no OS is present

• And now some of the innovations they enable...



  

#1: Xen Automotive

• A subproject of the Xen Project

• Proposed by community member GlobalLogic

• Support for infotainment systems (for now...)

• Eliminates multiple discreet systems needing 
sourcing, installation, and testing

• ARM-based



  

Automotive Challenges

• Soft-Real-time support

• Hard-Real-time support

• GPU virtualization

• Other co-processor (DSP, IPU, etc.)

• Certification

• Driver support for Android, e.g. Backend ION memory 
allocator and Linux User Space Device Drivers for 
Graphics, Sound, USB, Giros, GPS, etc.

• Driver support for operating systems such as QNX and 
other guest operating systems that are relevant for these 
use-cases



  

A Focused Hypervisor

• Automotive requires extreme focus

• Simply repurposing a server-based hypervisor 
won't cut it

• A Bare-Metal hypervisor can add and modify 
pieces as needed
– There is no legacy Host Operating System to be 

accommodated

– Bare-Metal can do what the situation requires



  

#2: Realtime Virtualization

• Support for Xen Automotive and beyond

• RT-Xen

• Streaming video, etc. cannot wait for next 
time slice

• Leverages a custom scheduler



  

Custom Schedulers

• Type 2 (Hosted) Hypervisors use the scheduler of 
the host (e.g., Linux)
– That scheduler is designed for the host operating 

system, not for special needs

• Type 1 (Bare Metal) Hypervisors use schedulers 
designed for the needs of the hypervisor itself
– It is possible to change the scheduler to meet the 

needs of the hypervisor

– That's the way to handle Realtime Scheduling



  

A Scheduler for Every Need

• Current schedulers in Xen Project:
– Credit

• General Purpose

• Default scheduler in 4.5

– Credit2
• Optimized for low latency & high VM density

• Currently Experimental

• Expected to become supported and default in future



  

A Scheduler for Every Need

• Current schedulers in Xen Project (continued):
– RTDS

• Soft & Firm Realtime scheduler

• Multicore
• Currently Experimental
• Embedded, Automotive, Graphics, Gaming in the Cloud

– ARINC 653
• Hard Realtime
• Single Core

• Currently Experimental
• Avionics, Drones, Medical



  

A Scheduler for Every Need

• Past schedulers in Xen Project:
– Borrowed Virtual Time

– Atropos

– Round Robin

– SEDF (removed in Xen Project 4.6)

• For more information:
– http://wiki.xenproject.org/wiki/Xen_Project_Schedulers 

http://wiki.xenproject.org/wiki/Xen_Project_Schedulers


  

#3: ARM-based Hypervisor 

• ARM expanding from handhelds to 
servers

• Virtualization extensions added to ARM V7

• Architecture is hand-in-glove fit for Bare-
Metal hypervisor

• No mode changes means greater speed 
and security
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Where Will an ARM Hypervisor Play?

• You name it...
– Cell phones

• Multiple personalities are possible

– Embedded systems
• Automotive is just the beginning; Trains are already here!

– Internet of Things (IoT)
• Lots of little things means lots of responses needed 

– Servers
• Lower power footprint
• Real green technology



  

#4: The Unikernel

• Super-small VMs

• Quick booting

• Enhanced security

• Easy deployment

• Enables transient services
– Services that appear when needed and 

disappear when done



  

The Cloud We Know

• Field of innovation is in the orchestration
– The Cloud Engine is paramount (OpenStack, CloudStack, etc.)

– Workloads adapted to the cloud strongly resemble their non-
cloud predecessors

• Some basic adaptations to facilitate life in the cloud, but basically the 
same stuff that was used before the cloud

• Applications with full stacks (operating system, utilities, languages, and 
apps) which could basically run on hardware, but are run on VMs 
instead.

• VMs are beefy; large memory footprint, slow to start up

• It all works, but its not overly efficient

• 10s of VMs per physical host



  

The Next Generation Cloud

• Turning the scrutiny to the workloads
– Should be easier to deploy and manage

– Smaller footprint, removing unnecessary 
duplication

– Faster startup

– Transient microservices

– Higher levels of security

– 1000s of VMs per host



  

The New Stuff: Docker & Containers

• Makes deployment easier

• Smaller footprint by leveraging kernel of host

• Less memory needed to replicate shared kernel 
space

• Less disk needed to replicate shared 
executables

• Really fast startup times

• Higher number of VMs per host



  

Docker Downsides

• Improvements, yes; but not without issues
– Can't run any payload that can't use host kernel

– Potential limits to scaleability
• Linux not really optimized for 1000s of processes

– Security
• Security is a HUGE issue in clouds

• Still working on security mechanisms
• Will users employ the security mechanisms or pick the quick-

and-easy deployment which has made Containers popular?



  

The Unikernel: A Real Cloud Concept

• Very small

• Very efficient

• Very quick to boot

• And very, VERY secure!

• It's a Green (energy) technology which saves you 
green (cash); extremely important to foster adoption

• Many unikernels already exist, including Mini-OS and 
MirageOS, a Xen Project Incubator Project



  

What is a Unikernel? From MirageOS



  

Unikernel Approach: MirageOS
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Unikernel Concepts

• Use just enough to do the job
– No need for multiple users; one VM per user

– No need for a general purpose operating system
– No need for utilities
– No need for a full set of operating system functions

• Lean and mean
– Minimal waste

– Tiny size



  

Unikernel Concepts

• Similar to an embedded application 
development environment
– Limited debugging available for deployed 

production system

– Instead, system failures are reproduced and 
analyzed on a full operating system stack and then 
encapsulated into a new image to deploy

– Tradeoff is required for ultralight images



  

What Do the Results Look Like?

• MirageOS examples:
– DNS Server: 449 KB

– Web Server: 674 KB

– OpenFlow Learning Switch: 393 KB

• LING metrics:
– Boot time to shell in under 100ms

– Erlangonxen.org memory usage: 8.7 MB

• ClickOS:
– Network devices processing >5 million pkt/sec

– 6 MB memory with 30 ms boot time



  

What About Security?

• Type-Safe Solution Stack
– Can be certified
– Certification is crucial for certain highly critical 

tasks, like airplane fly-by-wire control systems

• Image footprints are unique to the image
– Intruders cannot rely on always finding certain 

libraries
– No utilities to exploit, no shell to manipulate



  

What's Out There Right Now?

• MirageOS, from the Xen Project Incubator

• HaLVM, from Galois

• LING, from Erlang-on-Xen

• ClickOS, from NEC Europe Labs

• OSv, from Cloudius Systems

• Rumprun, from the Rump Kernel Project

• And that's just the beginning...



  

How Does Xen Project Enable Unikernels?

• No Host OS means it's lean and mean
– A tiny VM can sit on a thin hypervisor layer on the 

hardware

– Attack surface is small

– Scale out support
• Can currently support about 600 concurrent VMs per host 

without losing performance

• Current target: 2000-3000 concurrent VMs per host

– Enhanced scheduler (Credit2)

– ARM as an option



  

Innovation: Is This All?

• By no means!

• The list of other subprojects & capabilities 
continues to grow:
– Virtualized GPUs

– Enhanced NUMA

– COLO: Coarse-grained lockstepping of VMs

– Native VMware VMDK support

– And so on...

• http://xenproject.org/users/innovations.html 

http://xenproject.org/users/innovations.html


  

In Review...

• Some advantages of a Bare-Metal Hypervisor
– Density: It's thin

• Excellent for supporting very small workloads

– Scalability: It can support huge numbers of VMs
• Terrific for highly dense workloads

– Security: No host OS
• It has no host OS layer to attack 

– Scheduling: Can use dedicated scheduler
• Needed for specialized workload profiles where a host OS scheduler 

just won't do

– Paravirtualization: Simplified interface
• Easier to code to when no OS is present



  

The Xen Project Difference

• Tomorrow's workloads are not yesterday's 
workloads
– If your hypervisor is just focused on yesterday's 

payloads, it is suffering from planned obsolescence

– Select a hypervisor which is innovating – and Open 
Source

• Xen Project is busy enabling the next 
generation in virtualization



  

Questions?

rcpavlicek@yahoo.com

Twitter: @RCPavlicek

Actively looking for a new opportunity

This presentation is available in the Presentations Section of 
XenProject.org

mailto:rcpavlicek@yahoo.com
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Basic Xen Project Concepts: Toolstack+
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Basic Xen Project Concepts: Disaggregation
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