
Distributed Version
Control Systems (DVCS) &
Mercurial

Lan Dang
SCaLE 13x
2015-02-22

http://bit.ly/1EiNMao

http://bit.ly/1EiNMao
http://bit.ly/1EiNMao

About the Talk

● Prepared originally for SGVLUG monthly
meeting about a year ago

● Product of intense research for new task at
work

● Structured so people of all skill levels could
learn something

● Slides meant to serve as a reference
● Google Drive location: http://bit.ly/1EiNMao

http://bit.ly/1EiNMao

Overview

● Version Control Systems
● DVCS Concepts
● Mercurial basics
● git vs Mercurial
● Mercurial under the hood
● Case Studies
● References

My background

● Subversion -- very basic knowledge
● git -- for small single-user projects
● Mercurial -- limited experience as user,

moderate experience as administrator
● Focused on use on Linux/Unix; no

experience on Windows or with tools like
TortoiseHg

About Version Control Systems

Version control systems (VCS) gives you the power to
● time travel
● more easily collaborate with others
● track changes and known good states

Eric Raymond defines VCS as a tool that gives you the
capabilities of reversibility, concurrency, and annotation
http://www.catb.org/esr/writings/version-
control/version-control.html

http://www.catb.org/esr/writings/version-control/version-control.html
http://www.catb.org/esr/writings/version-control/version-control.html
http://www.catb.org/esr/writings/version-control/version-control.html

History of Version Control

According to Eric Raymond, and summarized
by Eric Sink: there are three generations of
VCS

From Chapter 1 of "Source Control By Example" by Eric Sink:
http://www.ericsink.com/vcbe/html/history_of_version_control.html

http://www.ericsink.com/vcbe/html/history_of_version_control.html
http://www.ericsink.com/vcbe/html/history_of_version_control.html

Source Control Taxonomy

Lifted from Scott Chacon's "Getting Git" screencast: http://vimeo.
com/14629850 (look at time 5:06)

http://vimeo.com/14629850
http://vimeo.com/14629850
http://vimeo.com/14629850

DVCS at work

"Centralized vs Distributed Version Control in
90 seconds" by Intland Software
http://youtu.be/_yQlKEq-Ueg

http://youtu.be/_yQlKEq-Ueg
http://youtu.be/_yQlKEq-Ueg

Uses for DVCS

● Keep track of
○ source code
○ scripts
○ configuration files
○ notes (my personal use case ;)
○ other files (beyond scope of this talk)

● Synchronizing files across multiple
computers

● powering a website or wiki
○ See github

● working offline
○ Don't need network connection to make changes

DVCS Basic Concepts

● The heart of Version Control Systems is the
repository, which contains the history and
versions of all the files (aka changesets) under
version control.

● In DVCS, each developer has a copy of the entire
repository. It is usually local to their working
directory.

● Modifications are not recorded in the repository
until they have been committed or checked in.
These commits are known as changesets.

DVCS Basic Concepts

● Changesets are identified by a changeset id,
usually based on a hash of the changeset.

● Changesets belong to one or more parents,
these being the changesets that represented
the state of the repository before the latest
commit.

● The working directory is where the plain,
editable files are. It can be updated to a
particular changeset in the repository's
history, or to the most current changeset.

DVCS Basic Concepts

● Merging is the bread and butter of DVCS, as
that's how concurrency is supported. It is
therefore supposed to be painless and fast.

● However, it is important to synchronize often
with remote or upstream repositories to avoid
surprises and too many merge conflicts.
○ Pull changesets from remote repositories

into local working directory
○ Merge
○ Commit the merge
○ Push changesets to remote repositories

DVCS Basic Concepts

● Branches represent parallel lines of
development. They may be required for
long-running feature changes, support of
previous releases, or just for the sake of
experiment.

DVCS Basic Concepts in summary

● Repositories are cloned, rather than
checked out.

● Developers do their development in their
local repositories and may commit
changesets as often as they wish

● Developers should periodically synchronize
with upstream (remote) repositories by
pulling in upstream changesets, merging,
and then pushing.

Getting started with Mercurial

● Configuration is done through user-level ~/.
hgrc

● Here is a basic config
[ui]
username = <your_username>

Setting up Mercurial prompt

hg-prompt adds Mercurial-specific information
to your normal shell prompt. This gives you a
visible indicator of the state of your working
directory. This is important if you do a lot of
branching.

Download the Python extension somewhere on
your computer
http://mercurial.selenic.
com/wiki/PromptExtension

http://mercurial.selenic.com/wiki/PromptExtension
http://mercurial.selenic.com/wiki/PromptExtension
http://mercurial.selenic.com/wiki/PromptExtension

Setting up Mercurial prompt (.hgrc)

Add the following line to your .hgrc:

[extensions]
prompt = (path to)/hg-prompt/prompt.py

Setting up Mercurial prompt (bash)

Add following lines to .bashrc

Add Mercurial prompt
This is the prefix that appears before your normal prompt
hg_ps1() {
 hg prompt "({branch})[{status}] " 2> /dev/null
}

Prepend dynamic Mercurial prompt to normal prompt
export PS1='$(hg_ps1)[\u@\h \w]$ '

Setting up Mercurial prompt (csh)

Create "hgprompt.csh" and place it in your
home directory
setenv HG_PROMPT 'hg prompt "\({branch}\)[{status}]"'
set prompt="`$HG_PROMPT` [`whoami`@`hostname -s` $cwd]$ "

Add the following to .cshrc or .tcshrc. Edit
the line depending on location of hgprompt.
csh
alias precmd "source ~/bin/hgprompt.csh"

NOTE: precmd is a special alias that is run every time a command is
executed in csh

Mercurial basic commands

● Create repository
hg init
● Add files to repository (aka register them

for version control)
hg add <file(s)>
● Remove files from repository (aka stop

tracking them)
hg remove <file(s)>

Mercurial basic commands

● Rename or move files in repository
hg mv <file> <newfilename>
NOTE: It is important to do this, so that you can more easily track
changes to files in the repository, even if they have moved around or
been renamed.

● Commit changes (aka add changeset to
repository)

hg commit -m "<commit message>"
● Check for files to be added or committed in

working directory
hg status

Mercurial basic commands

● View the current state of working directory
(last changeset, branch, commit state)

hg summary
● View repository history/log
hg log | head
● View repository history for a particular

branch
hg log -b <branch>

Mercurial basic commands

● Update working directory to latest
changeset in default or current branch

hg update
● Update working directory to a particular

branch
hg update <branch>
● Update working directory to main branch.

(In Mercurial, this branch is called "default")
hg update default

Mercurial basic commands

● Clone existing repository
hg clone </path/to/repo>
● See if there are new changesets in remote

repo
hg incoming
● See if there are changesets in your local

repository that need to be synchronized
hg outgoing

Mercurial basic commands

● Pull changesets from remote repository
hg pull
● Merge changeset into current working

directory.
hg merge
hg commit -m "YARM"

NOTE: Mercurial should prompt you if merging is required. You must
commit merges for them to be recorded in the repository.

Mercurial basic commands

● Push changes from local repository to
remote repository

hg push
● Branch
hg branch <branchname>
<make changes>
hg commit -m "Branch <branchname> to do
some development on X feature"
NOTE: In Mercurial, named branches are just labels that are attached
to a changeset. They don't fully exist until you commit the
changeset. Once used, the branch names cannot be changed.

Mercurial basic commands

● View the tags in the repository. Tags are
basically meaningful aliases for particular
changeset ids

hg tags
● Tag the current changeset
hg tag <tagname> # tags current changeset

NOTE: Tags are kept in .hgtags file, which is version controlled. The
above command automatically updates .hgtags and commits the
change. However, it requires that you are on the latest changeset
(aka head) of your particular branch.

Mercurial basic commands

● Tag a particular changeset with a
meaningful name. This version of the
command gives you more control over what
changeset is tagged and what the tag
commit message says.

hg tag -r <changeset id> -m "Tagging
<changeset id> as tag <tagname>, per release
document XYZ" <tagname>

Mercurial basic commands

● Update working directory to a particular
changeset (or point in history)

hg update -r <changeset id>
hg update -r <revision number>

NOTE: Revision numbers are provided as a convenience for the user.
They are basically aliases for changeset ids and local to that
particular repository. The revision number may not map to the same
changesets in other repositories.

git vs Mercurial (origins)

● Bitkeeper -- commercial DVCS used for Linux kernel
development. Started at 1999; adopted for Linux
kernel development circa 2002. No longer available
to Linux kernel developers starting in 2005.

● git (C & Perl) -- written by Linus Torvalds in 2005 to
replace Bitkeeper

● Mercurial (Python)-- written by Matt Mackall in 2005
to replace Bitkeeper

● Both git and Mercurial are being actively developed
and reaching feature parity.

git vs Mercurial (git)

● git
○ written in C and Perl.
○ fast performance and good merging algorithm
○ integrity of repository despite untrustworthy

sources (the hash is key)
○ clean history through rebase
○ super lightweight branches
○ staging area for commits
○ extensions can be written in any language
○ exposes more of the complexity to the user
○ not always intuitive to use

git vs Mercurial (Mercurial)

● Mercurial
○ written in Python
○ history is immutable, except through extensions.

(modification of repository history strongly
discouraged.)

○ less complicated interface, easier to use
○ More focus on cross-platform support and tool

integration, i.e., much easier to set up on Windows
○ Extensible through plugin architecture
○ Explicit focus on backwards-compatibility, except that

Mercurial API may change between versions.
○ branches as repositories, named branches
○ "clean history" through patchsets rather than rebase.
○ merge mostly relies on external tools like meld, kdiff3

Under the Hood

"Version control tools are more like cars than clocks.
" Clock users have no need to know how a clock works behind the
dials. We just want to know what time it is. Those who understand
the inner workings of a clock can’t tell time any more skillfully than
the rest of us.
"Version control tools are more like cars. Lots of people, including
me, use cars without knowing much about how they work. However,
people who really understand cars tend to get better performance
out of them." -- Eric Sink

http://www.ericsink.com/vcbe/html/internals.html

NOTE: Highly recommend understanding how the tools work, so you
will understand why some things are easy and some things are hard.

http://www.ericsink.com/vcbe/html/internals.html
http://www.ericsink.com/vcbe/html/internals.html

Under the Hood: : How DVCS ensures
integrity of repository

In both git and Mercurial, history is
represented as a Directed Acyclic Graph
(DAG).

Changesets represent the state of the system
at a particular time. Changesets may include
a number of metadata, but all changesets
refer to 0,1, or more parents.

Under the Hood: : How DVCS ensures
integrity of repository

● Changeset ids are cryptographic hashes of
the changesets. Therefore, changesets
cannot be modified without modifying
changeset ids.

● Since changesets include their parents'
changeset ids, the changeset id ensures
integrity through root of changeset graph

● This means a known changeset id can
guarantee the integrity of the codebase up
to that point in history.

Under the Hood: Merging
The way that the merges resolve differences is to look at what changed in the changeset and what changed in your current
branch since the common branch point, and it will use that to decide which parts of the file change.

http://stackoverflow.com/questions/9532823/mercurial-branch-specific-changes-keep-coming-back-after-dummy-merge

http://stackoverflow.com/questions/9598704/consequences-of-using-graft-in-mercurial

This table describes how the 3-way merge works. "Ancestor" refers to the common branch point, "local" to your working
directory, and "other" to the changeset that you are merging with.

Ancestor Local Other Merge?

old old old old (nobody changed the hunk)

old old new new (they changed the hunk)

old new old new (you changed the hunk)

old new new new (hunk was cherry picked onto both branches

old foo bar <!> (conflict, both changed hunk but differently)

http://stackoverflow.com/questions/9532823/mercurial-branch-specific-changes-keep-coming-back-after-dummy-merge
http://stackoverflow.com/questions/9532823/mercurial-branch-specific-changes-keep-coming-back-after-dummy-merge
http://stackoverflow.com/questions/9598704/consequences-of-using-graft-in-mercurial
http://stackoverflow.com/questions/9598704/consequences-of-using-graft-in-mercurial

Under the Hood: YARM

"Yet Another Random Merge"
Due to concurrent commits in different
repositories, merging is required to integrate all
the changes into a common, somewhat linear
commit history.

This means that you will often have to merge,
even if you haven't been editing the same files.
Think of the merge as a repository-level merge,
rather than a file-based merge.

Case Studies: Corrupt Repository

Issue: User was unable to pull from central repository after colleague
pushed his changes.

Investigation: Colleague had accidentally corrupted central
repository on push. His repository had become corrupted somehow.

Resolution: Caught this early. Got agreement from stakeholders to
rollback the change to central repository.
Gave instructions on how to recover local repo:

1. backup local repo
2. make fresh clone
3. copy over changes to clone
4. commit changes
5. synchronize with central repo.

Case Studies: Corrupt Repository

Mitigation: The repository information is stored in hidden directory .
hg

Certain file system commands can corrupt the contents of .hg -- say
"find" with "rm"

Periodically run the following command to verify integrity of
repository before pushing.
hg verify

Case Studies: Repo Reorganization

Issue: Team Lead wanted to move a directory from one
repository to another.

Resolution: Repository migrations or reorganizations
require the use of the "convert" extension, which is used
to migrate from other VC tools to Mercurial, or it can be
used to subset Mercurial repositories.

http://mercurial.selenic.com/wiki/ConvertExtension

http://mercurial.selenic.com/wiki/ConvertExtension
http://mercurial.selenic.com/wiki/ConvertExtension

Case Studies: Repo Reorganization

The "convert" extension is distributed with
Mercurial. Therefore, it is easy to activate it
for use:

Add the following line to ~/.hgrc under
[extensions]
convert=

Case Studies: Repo Reorganization

The directory being migrated had been renamed several
times since it was created. In order to migrate all the
relevant changesets, needed to track down directory
name variants.
hg log <directory name> # Look for oldest changeset involving this directory

hg log -v -r <oldest changeset> # Verbose log shows files involved in commit.

See if there was a possible rename. Record the directory name. Repeat
above steps until you find the original commit that created the directory.

Case Studies: Repo Reorganization

Generate a filter (filemap) to determine changesets to
be migrated. In this case, I just had to indicate the
directory name. I usually do it from oldest to newest
name.

filemap.txt contents:
exclude .
include <first dir name>
include <second dir name>
include <third dir name>

Case Studies: Repo Reorganization

Generate a filter (branchmap) to determine how to map
the branch names in the changesets. Basically, because
I did not want changesets to spuriously show up in
existing branches in the new repository, I mapped them
all to the default branch.

branchmap.txt contents:
<old branchname> <newbranchname>

Case Studies: Repo Reorganization

Set up the two repositories before the conversion. Clone both
repositories and update the working directory to the tip.
hg convert <oldrepo> <newrepo> --filemap filemap.txt --branchmap
branchmap.txt

Because of the branchmap, now have multiple heads for default.
Need to do dummy merges, so it is only one head.
hg heads -c default # Gives a list of heads for default branch
hg update tip
hg merge <extra head>
hg revert -a -r tip --no-backup # reverses effect of above merge
hg commit -m "MIGRATION: Dummy merge to resolve extra head
(changeset <changeset id>) from migration"

Case Studies: Repo Reorganization

In the old repo, remove the directory that was migrated
cd <oldrepo>
hg remove <migrated dir>
hg commit -m "Removing <migrated dir>, which can now be found in
<newrepo>"

Case Studies: Repo Reorganization 2

Issue: Team Lead wanted to extract a directory from one repo
and make it its own repo.

Resolution: Used the "convert" extension again. Slight changes
to convert subdirectory to top level of repository using
"rename" directive. In addition, no issues with merging or need
to remap branch names.

filemap.txt contents:
exclude .
include <dirname 1>
include <dirname 2>
rename <dirname 2> .

Case Studies: Repo Reorganization 2

Initialized a new repo in the central repo area. Cloned both the new
repo and the old repo. Updated both to tip.

hg convert <old repo> <new repo> --filemap filemap.txt

Removed directory from old repo
cd <old repo>
hg remove <old dir>
hg commit -m "Migration: Removing <old dir>, which has
now been promoted to top level repository <newrepo>"

Case Studies: Strip Files from Repo

Issue: Developer accidentally checked in some large files
into repository. It was not the appropriate use of the VC
tool and resulted in slow performance for everyone using
the repository. Needed to strip the files from repository's
history.

Resolution: Once again, this requires the "convert"
extension. However, this involved the editing of the
central repository, so had to get the stakeholders to
arrange a quiet time and agree to abandon old repository
and make a fresh clone.

Case Studies: Strip Files from Repo

Determine the files to strip. This needs to be in relation
to top level directory of repository.
cd <repo>

find ./ -name "*.mat" -or -name "*.bin" -or -name ".svn" | \

 while read file; do echo exclude $file; done | \

 tee ../filemap.txt

Archived old repo. Make a fresh new directory.

hg convert <archived repo> <new repo> --filemap filemap.txt --sourcesort

NOTE: If there are filenames with spaces in them, just quote them.

exclude "<filename with spaces>"

Case Studies: Strip Files from Repo

Mitigation: You can prevent accidental commits of certain
filetypes using .hgignore in the top level of the repository.

.hgignore contents:
syntax: glob

*~

*.o

*.pyc

*.mat

*.bin

Case Studies: Strip Files from Repo

Binary files may cause the repository format to expand greatly with each new version, due to
the storage format.

Even with text files, there are limitations on individual file size.

There appears to be a 2GB limitation due to internal limitations such as wire protocol, etc.

There is huge memory overhead as Mercurial handles files as huge Python strings in memory.
The memory requirement is estimated to be 3-5x the size of the filesize.

There are limitations on address space, according to platform, which further restrict
individual file size.

● 400MB limitation (32-bit Windows)
● 1GB limitation (32-bit Linux)
● 2GB limitation (64-bit Mercurial).

http://mercurial.selenic.com/wiki/HandlingLargeFiles

http://mercurial.selenic.com/wiki/HandlingLargeFiles
http://mercurial.selenic.com/wiki/HandlingLargeFiles

Case Studies: Migrating Changesets
into Branch

Issue: Team lead asked that certain
changesets on the default branch be reverted
and the changesets moved to an existing
branch.

Resolution: Revert the default branch to the
desired state using "hg revert". Because so
few changesets were involved in both default
and the branch, decided to use patches to
resolve the issue.

Case Studies: Migrating Changesets
into Branch

Revert default branch to desired state. This
would be the parent of the oldest changeset
to be backed out.
hg revert --all -r <desired changeset>
hg commit -m "Reverting default branch back to state
before changesets <changeset ids> were commited, as
those changesets belong on branch <branch name>"

Case Studies: Migrating Changesets
into Branch

Export all the changesets that need to be on the new
branch as patches. Order matters, so number them from
oldest to newest
hg export -o ../patch1 <oldest changeset>

hg export -o ../patch2 <next oldest changeset>

hg export -o ../patch3 <third oldest changeset>

hg export -o ../patch4 <last changeset, which was on branch>

Case Studies: Migrating Changesets
into Branch

Revert the new branch to right before it branched, i.e.,
the parent of changeset exported as patch4.
hg update <new branch>

hg revert --all -r <branch point>

hg commit -m "<branch> FIX: Reverted branch <branch> to rev <branch point>
to change where branch starts, so we can replay all commits belonging to
branch"

Verify that <new branch> head is now identical to default branch head

hg diff -r default

Case Studies: Migrating Changesets
into a Branch

Apply the exported patches to <new branch>. Because we
used Mercurial to generate the patches, it retains the
original commit message and author, so it's very much like
replaying commits.
hg update <new branch>

hg import ../patch1

hg import ../patch2

hg import ../patch3

hg import ../patch4

References

"Understanding Version-Control Systems
(DRAFT) by Eric Raymond
http://www.catb.org/esr/writings/version-
control/version-control.html

NOTE: This is a draft, and some things may be inaccurate or out-of-
date. The writing is very formal, almost academic in nature. It really
gets into the history of VCS, from its origin in the 1970s.

http://www.catb.org/esr/writings/version-control/version-control.html
http://www.catb.org/esr/writings/version-control/version-control.html
http://www.catb.org/esr/writings/version-control/version-control.html

References

Eric Sink has two resources:
"Source Control HOWTO" (focuses on
"centralized" version control tools)
http://www.ericsink.
com/scm/source_control.html

"Version Control by Example" (with more focus
on decentralized or distributed version control
tools)
http://www.ericsink.com/vcbe/

http://www.ericsink.com/scm/source_control.html
http://www.ericsink.com/scm/source_control.html
http://www.ericsink.com/scm/source_control.html
http://www.ericsink.com/vcbe/
http://www.ericsink.com/vcbe/

References

"So you want to know more about Distributed
Version Control," e-mail from Lan Dang sent to
SGVLUG listserv listing a series of videos with
annotations:
http://sgvlug.net/pipermail/sgvlug/2012-
October/010206.html

NOTE: Scott Chacon link expired. Look for video "Getting Git" by
Scott Chacon, a screencast based on talk given at RailsConf 2008
here: http://vimeo.com/14629850

http://sgvlug.net/pipermail/sgvlug/2012-October/010206.html
http://sgvlug.net/pipermail/sgvlug/2012-October/010206.html
http://sgvlug.net/pipermail/sgvlug/2012-October/010206.html
http://vimeo.com/14629850

References

"Hg Init Subversion Re-education" by Joel
Spolsky
http://hginit.com/00.html

NOTE: This is an entertaining and illustrated tutorial explaining
conceptual differences between Subversion and Mercurial. Also gives
you a handle on Mercurial basics.

http://hginit.com/00.html
http://hginit.com/00.html

References

"Mercurial for Git Users" from Mercurial wiki
http://mercurial.selenic.
com/wiki/GitConcepts

NOTE: This posits that Mercurial and Git are pretty much the same
thing, with different philosophies and ways of accomplishing the same
tasks. Please note that this is doing a heads-on comparison of
particular versions of Mercurial and git; the two of them evolve so
much, it is necessary to mark the versions.

http://mercurial.selenic.com/wiki/GitConcepts
http://mercurial.selenic.com/wiki/GitConcepts
http://mercurial.selenic.com/wiki/GitConcepts

References

"The Real Difference Between Git and
Mercurial" by Xentac (Jason Chu)
http://xentac.net/2012/01/19/the-real-
difference-between-git-and-mercurial.html

NOTE: This article is a little over a year old. It's interesting in
describing the origins of Git and Mercurial and the different
architectural and design decisions made. Comments are interesting
too.

http://xentac.net/2012/01/19/the-real-difference-between-git-and-mercurial.html
http://xentac.net/2012/01/19/the-real-difference-between-git-and-mercurial.html
http://xentac.net/2012/01/19/the-real-difference-between-git-and-mercurial.html

References

"Understanding Mercurial" from Mercurial wiki
http://mercurial.selenic.
com/wiki/UnderstandingMercurial

NOTE: An illustrated view of Mercurial basic concepts. It makes so
much more sense when you can view things as a directed acyclic
graph.

http://mercurial.selenic.com/wiki/UnderstandingMercurial
http://mercurial.selenic.com/wiki/UnderstandingMercurial
http://mercurial.selenic.com/wiki/UnderstandingMercurial

References

"Mercurial Working Practices"
http://mercurial.selenic.
com/wiki/WorkingPractices

NOTE: It's always good to understand the typical workflows with a
tool, as this will enable you to work with the tool's strengths. Also,
tool enhancements and bugfixes are probably focused on people's
typical use cases.

http://mercurial.selenic.com/wiki/WorkingPractices
http://mercurial.selenic.com/wiki/WorkingPractices
http://mercurial.selenic.com/wiki/WorkingPractices

References

"A Guide to Branching in Mercurial" by Steve
Losh
http://stevelosh.com/blog/2009/08/a-guide-
to-branching-in-mercurial/

NOTE: The article is old, but I believe it is still relevant. It's a
detailed description of different ways to branch in Mercurial, and how
it compares to git.

http://stevelosh.com/blog/2009/08/a-guide-to-branching-in-mercurial/
http://stevelosh.com/blog/2009/08/a-guide-to-branching-in-mercurial/
http://stevelosh.com/blog/2009/08/a-guide-to-branching-in-mercurial/

References

"Mercurial Kick Start" by aragost Trifork, a
Mercurial consulting company
http://mercurial.aragost.com/kick-start/en/

NOTE: This gives a lot of examples for different tasks and workflows.

http://mercurial.aragost.com/kick-start/en/
http://mercurial.aragost.com/kick-start/en/

References

"Mercurial: The Definitive Guide" by Bryan
O'Sullivan
http://hgbook.red-bean.com/

NOTE: The online version of the book has a comment system so folks
can directly add feedback for each section of the book. The source
code for the book is a Mercurial repository, so people can either fork
the book, or they can make modifications and send them back to the
author.

http://hgbook.red-bean.com/
http://hgbook.red-bean.com/

QQQ

Questions?

Lan Dang
l.dang@ymail.com

