

## Kubernetes Cloud Cost Monitoring with OpenCost & Optimization Strategies

Matt Ray

Senior Community Manager for OpenCost

mattray@kubecost.com

SCaLE 20x

## Who am I?

#### **Matt Ray**

- Senior Community Manager for OpenCost at Kubecost.
- Co-host of the Software Defined Talk podcast for 8+ years.
- Living in Sydney, Australia for 6+ years after relocating from Austin, Texas.
- Active in Open Source for much, much longer.
- <u>mattray@kubecost.com</u>
- https://www.linkedin.com/in/mhray/
- @mattray on GitHub, Mastodon, too many Slacks





## The complexity of operating Kubernetes efficiently is real



## OpenCost

### **Open source Kubernetes cost monitoring**

Specification and Implementation

Cloud Native Computing Foundation Sandbox Project

**FinOps Certified Solution** 

- https://opencost.io
- <u>https://github.com/opencost</u>
- <u>https://www.cncf.io/projects/opencost/</u>



## **OpenCost Specification**



### Created by a community of Kubernetes practitioners

https://github.com/opencost/opencost/blob/develop/spec/opencost-specv01.md

- Adobe
- Armory
- AWS
- D2IQ
- Google Cloud
- Kubecost
- Mindcurv
- New Relic
- Pixie
- Red Hat
- SUSE

## **OpenCost Specification**



https://github.com/opencost/opencost/blob/develop/spec/opencost-specv01.md

Kubernetes workloads are often transient and vary in the resources they consume.

How do we measure who is responsible for what and how much?

- Management fees
- Expenses from nodes
- Persistent volumes
- Attached disks
- Load balancers
- Network ingress/egress

## **Total Cluster Costs**



Total Cluster Costs = Cluster Asset Costs + Cluster Overhead Costs



## **Cluster Asset Costs**



Cluster Asset Costs = Resource Allocation Costs + Resource Usage Costs

**Cluster Overhead Costs** 

**Cluster Asset Costs** 

| Cluster Overhead Costs          |                            |  |  |
|---------------------------------|----------------------------|--|--|
| Resource<br>Allocation<br>Costs | Resource<br>Usage<br>Costs |  |  |

## **Cluster Asset Costs: Node Costs**



**Cluster Asset Costs = Resource Allocation Costs + Resource Usage Costs** 

| Cluster Ove            | rhead Costs       |   | Cluster Mana            | gement Fees       |
|------------------------|-------------------|---|-------------------------|-------------------|
|                        |                   | = | Node (CPU,<br>RAM, GPU) |                   |
| Resource<br>Allocation | Resource<br>Usage |   | Persistent<br>Volume    | Network<br>Egress |
| Costs                  | Costs             |   | Load<br>Balancer        |                   |

## We've got the cost of our Kubernetes assets

Now let's distribute them across Workloads

## Workload Costs



### Inside the Kubernetes Cluster

#### What is Measured

- CPU
- Memory
- GPU
- Storage Volume
- Load Balancer

### Aggregations

- Container
- Pod
- Deployment
- StatefulSet
- Job
- Controller Name
- Controller Kind
- Label
- Annotation
- Namespace
- Node
- Cluster

### Workload Costs + Cluster Idle Costs



Total Cluster Costs = Workloads + Cluster Idle Costs + Cluster Overhead Costs



## Workload Costs + Cluster Idle Costs



Total Cluster Costs = Workloads + Cluster Idle Costs + Cluster Overhead Costs

| Cluster Overhead Costs          |                            |  |  |  |
|---------------------------------|----------------------------|--|--|--|
| Resource<br>Allocation<br>Costs | Resource<br>Usage<br>Costs |  |  |  |

Cluster Overhead Costs
Cluster
Idle
Costs
Workload Costs

## Workload Costs + Cluster Idle Costs



Total Cluster Costs = Workloads + Cluster Idle Costs + Cluster Overhead Costs

| Cluster Ove                     |                            | Cluste | er Overhea               | ad Costs           |                |
|---------------------------------|----------------------------|--------|--------------------------|--------------------|----------------|
| Resource<br>Allocation<br>Costs | Resource<br>Usage<br>Costs | =      | Cluster<br>Idle<br>Costs | Allocated<br>Costs | Usage<br>Costs |





#### Cluster Idle Cost = Cluster Asset Costs - Workload Costs

Idle costs can be calculated at the Asset/Resource and at the Workload level.

| Allocated | Idle |
|-----------|------|
|           |      |



## I understand what we're measuring

How do I get at the metrics?

## **OpenCost Architecture**





## **Deploying OpenCost**



https://www.opencost.io/docs/install

Prometheus

• Prom community Helm chart the default

**OpenCost Manifest** 

kubectl apply --namespace opencost -f
 https://raw.githubusercontent.com/opencost/opencost/develop/kubernetes/opencost.yaml

### **OpenCost Helm Chart**

- <u>https://github.com/opencost/opencost-helm-chart/</u>
- Configurable settings (Prometheus, namespaces, etc.)

## Accessing OpenCost



### · API

- Web UI
- kubectl cost
- Prometheus

| CLUSTER | NAMESPACE                                 | MONTHLY RATE (ALL)                            | COST EFFICIENCY                  |
|---------|-------------------------------------------|-----------------------------------------------|----------------------------------|
|         | opencost<br>  prometheus<br>  kube-system | 18.295200         17.992800         11.383200 | 0.231010<br>0.000000<br>0.033410 |
| SUMMED  |                                           | 47.671200                                     |                                  |



#### Last 7 days by controller daily Date Range Breakdown Resolution Last 7 days Controller Daily 25 January 2023 through now by Controller • ₽ 0.24 0.18-0.12-0.06 0-2023-1-25 2023-1-26 2023-1-27 2023-1-28 2023-1-29 2023-1-30 CPU ΡV Name RAM Efficiency ↓ Total cost

| Totals               | \$1.28 | \$0.09 | \$0.00 | 15.4% | \$1.37 |
|----------------------|--------|--------|--------|-------|--------|
| deployment:coredns   | \$0.55 | \$0.05 | \$0.00 | 3.2%  | \$0.60 |
| daemonset:kube-proxy | \$0.55 | \$0.00 | \$0.00 | 0.3%  | \$0.55 |
| daemonset:aws-node   | \$0.14 | \$0.00 | \$0.00 | 12.8% | \$0.14 |
| deployment:opencost  | \$0.05 | \$0.04 | \$0.00 | 18.3% | \$0.09 |
|                      |        |        |        |       |        |

С

## What's the Future of OpenCost?

## What's the Future of OpenCost?

What do you want it to be?

## Near-Term Roadmap

- External Asset Costs
- Backstage integration
- More Clouds
- More Documentation
- More Integrations



## Get Involved with OpenCost

<u>https://www.opencost.io</u>

Slack

• <u>https://slack.cncf.io/</u> #opencost

GitHub

- <u>https://github.com/opencost/opencost</u>
- <u>https://github.com/opencost/opencost-helm-chart</u>
- <u>https://github.com/opencost/opencost-website</u>

OpenCost Working Group

- <u>https://bit.ly/opencost-calendar</u>
- <u>https://bit.ly/opencost-meeting</u>

LinkedIn

<u>https://www.linkedin.com/showcase/opencost/</u>



# Kubernetes Optimization Strategies

We've got the numbers, now what do we do?



## **FinOps**

https://finops.org

The FinOps Foundation provides guidance on cloud financial management through best practices, education, and standards.

Establish a FinOps practice within your organization.



## FinOps

**FinOps** is an evolving **cloud financial management discipline** and **cultural practice** that enables organizations to get **maximum business value** by helping engineering, finance & business teams to collaborate on data-driven spending decision

Maturity

Phases



### Principles

- Teams need to collaborate
- Everyone takes ownership for their cloud usage
- A centralized team drives FinOps
- Reports should be accessible and timely
- Decisions are driven by business value of cloud
- Take advantage of the variable cost model of the cloud





### Domains

| Understanding<br>Cloud Usage<br>and Cost | Performance<br>Tracking &<br>Benchmarking | Real-Time<br>Decision Making | Cloud Rate<br>Optimization | Cloud Usage<br>Optimization | Organizational<br>Alignment |
|------------------------------------------|-------------------------------------------|------------------------------|----------------------------|-----------------------------|-----------------------------|
|------------------------------------------|-------------------------------------------|------------------------------|----------------------------|-----------------------------|-----------------------------|

## **Optimization Strategy**

Start at the top

Efficiencies and cost savings compound

Coordinate your savings across the org

This is an iterative process



## **Workload Strategies**



### **Applications Running on Kubernetes**

### **Abandoned Workloads**

• Deleting abandoned pods, controllers, or even entire namespaces

### **Right Sizing Containers**

- Updating pod manifests to reflect observed usage
- Providing requests and possibly LimitRanges for default resource allocations
- Always provide CPU requests, probably do not use CPU limits
- Always use memory requests and make limits equivalent

### **Managing Unclaimed Volumes**

• Delete volumes that are unused by any pods or move them to a cheaper storage tier

## **Kubernetes Strategies**



### **Cluster Configurations**

### **Right Sizing Cluster Nodes**

- Adjust the number and size of your cluster's nodes to stop overspending on unused capacity
- AMD CPUs may be less expensive than Intel for some workloads

### **Underutilized Nodes**

- Adjust the number and type of your cluster's nodes to stop overspending on unused capacity
- Check CPU, memory, storage class, and network requirements

### **Managing Unclaimed Volumes**

• Delete volumes that are unused by any pods or move them to a cheaper storage tier

## **Operating System Optimizations**



### **Under the Kubernetes Clusters**

### **Delete Unassigned Resources**

• Disks and IP addresses that are not being used by any clusters may continue to incur charges

### **Resize Local Disks**

• Resize local disks with low utilization

### Switch to Arm architecture

Arm CPUs are generally less expensive than Intel across cloud providers for similar performance

## **Cloud Infrastructure Optimizations**



### **Cloud FinOps**

#### **Reserved Instances**

• Consider purchasing reserved instances based on historical resource usage patterns

#### **Spot Instances**

• Identify workloads ready for spot (preemptible) nodes and resize your cluster to realize the savings of migrating workloads to spot

### **Savings Plans**

• Talk to your cloud vendor about all your options

#### This is why you have a FinOps team.

## **Optimization Strategy**

Start at the top

Efficiencies and cost savings compound

Coordinate your savings across the org

This is an iterative process



## **Thanks!**

### opencost@kubecost.com

