
Automatically Viewing the 
Most Interesting Streams on 

Twitch
Cullen Taylor

That’s a terrible title.



Rotisserie
Cullen Taylor



Who Am I?
● Developer Advocate at IBM.
● Focused on developing open source software 

around gaming and esports.
● Previously did DevOps-y stuff on various 

OpenStack deployments (both public and 
private).

● Graduated from Texas State University in 2015.
● Enjoy video games, playing guitar and drums, 

snowboarding, camping and road trips in my free 
time.



What is Rotisserie?
● Rotisserie is a webapp for passively viewing 

active streams on twitch.tv.
● Borrows from NFL Redzone concept.
● Written in node.js, runs on Kubernetes and 

incorporates Tesseract’s OCR engine.
● Still undergoing early active development with 

my colleagues.
● Currently focuses on a single game: 

PlayerUnknown’s BattleGrounds.



What’s with the chicken?
● Great question! I’ll answer with another 

question: What the heck is



Or PUBG, for brevity’s sake
● 100-player online Battle Royale game developed 

by BlueHole Studios in conjunction with 
Brendan Greene.

● Shares DNA with Arma III BR mod and H1Z1 
KotK, but refines those concepts.

● Entered “early access” beta period via Steam on 
March 23rd, 2017.

● Gained traction quickly, has sold 13 million 
copies to date and has highest number of 
concurrent players on Steam.



Basic Mechanics
● Players parachute from plane with no gear; must 

loot buildings for randomly-generated gear after 
landing.

● Can queue solo, duos, or 3/4 person squads.
● Last person standing wins (“Winner Winner 

Chicken Dinner”) by any means possible.
● Permadeath. Once you’re dead, you requeue. No 

respawns.
● Players forced to cluster together by a circle on 

the map which is constantly shrinking. Players 
outside the circle take damage until death.



Basic Mechanics



Shrinking Circles



The Use Case



The Use Case



High Level Overview



Twitch API Calls
● First, we grab a list of streamers currently 

streaming PUBG. Naturally, there is a 
node.js library for making Twitch api calls.

● Returns a JSON payload of streams. 
● Filter by English language streams and 

streams which are not flagged as for mature 
audiences (more on that later), and just 
focus on the stream names from there.



Recording a Stream
● Unfortunately, there is no good solution 

in node.js for recording raw twitch 
streams.

● Luckily, there is a python package called 
Livestreamer which makes this pretty 
easy.

● For each stream, we concurrently 
spawn a livestreamer process to record 
a second or two of footage, then kill it.



Taking a Screenshot
● Now that we have some footage of a stream, we 

take a screenshot in order to get a single frame.
● fluent-ffmpeg , a node.js library for ffpmeg, 

makes this easy.



Taking a Screenshot



Cropping a Screenshot
● Now, we can further utilize ImageMagick to crop 

down the screenshot to just the number of 
players alive.



Tesseract in a Microservice
● Finally, we can pass our cropped 

screenshot containing just a number to 
our OCR microservice.

● Tesseract is a fairly robust open source 
OCR engine.

● Make a POST request to the OCR 
microservice’s endpoint. It will return a 
string containing the number in the 
box.

● Assign the return value to the stream 
name and throw that in an array. 



Play it again, Sam!
● From here, we just repeat the process on an 

interval.
● Each iteration will update the array of stream 

names and sort by the number of players alive.
● The stream with the lowest number of players 

alive will be determined to be the “most 
interesting”, and some client-side Javascript will 
refresh the stream iframe.

● Users can “dim the lights” and pin a stream if 
they like it to stop auto-switching.



Problems and Caveats
● Lots of file operations, so lots of busywait while 

I/O and promise resolutions are handled.
● Many external dependencies were taken on in 

getting out of POC mode, resulting in lots of 
exception handling.

● Streamer overlays can get in the way of the 
number of people alive.

● Tesseract’s OCR engine can be unreliable, 
resulting in aberrant stream switching.

● Adblock doesn’t catch streamer ads (but that’s 
not all bad!).



Future Plans
● An IBM Developer Journey (blog post + code) to 

be released soon.
● Want to flesh out back to the original concept of 

doing visual recognition for a game with a busier 
UI (CS:GO, Overwatch, etc).

● Exploring the possibilities of Twitch’s new 
extensions model once more info on them has 
been released. Could make it easier to integrate 
directly with streams rather than scraping 
frames.



Check It Out!
● github.com/IBM/rotisserie
● https://pubgred.zone , soon to be at 

https://rotisserie.tv



Thanks!
github.com/eggshell

@eggshellcullen
blog.eggshell.me/seagl
mctaylor@us.ibm.com

mailto:mctaylor@us.ibm.com

