
IO Visor @SCaLE 14x

Brenden Blanco
Jan. 23, 2016

Agenda

2

A bit of history and project motivation

An introduction to eBPF in the Linux kernel

An introduction to the BCC toolkit

Show how Clang/LLVM is integrated into BCC

Demo how to use IOVisor to build functional network applications

Demo how to use IOVisor to debug a live system

Q+A

Founding Members

3

What we want

Started with building networking applications for SDN

An SDK to extend low-level infrastructure

But…

Don’t want to become a kernel developer

4

Compare to a server app framework (e.g. Node.js)

Recognize that writing multithreaded apps is hard

Syntax that mirrors thought process, not the CPU arch (events vs threads)

Don’t sacrifice performance (v8 jit)

Make it easy to get code from the devs to deployment (npm)

Foster a community via sharing of code

5

What do you need to write infrastructure apps

High performance access to data

Reliability...it must never crash

In-place upgrades

Debug tools

A programming language abstraction

6

But there are restrictions

No custom kernels

No custom kernel modules

No kernels with debug symbols

No reboots

(some of these are nice-to-haves)

7

8

IO Visor Project, What is in it?

• IO Visor Engine is an abstraction of an IO
execution engine

• A set of development tools, IO Visor Dev Tools

• A set of IO Visor Tools for management and
operations of the IO Visor Engine

• A set of Applications, Tools and open IO
Modules build on top of the IO Visor framework

• A set of possible use cases & applications like
Networking, Security, Tracing & others

Hello, World! Demo

#!/usr/bin/python
import bcc
b = bcc.BPF(text=”””
void kprobe__sys_clone(void *ctx) {
 bpf_trace_printk("Hello, World!\\n");
}
”””)
b.trace_print()

9

BPF

10

In a very simplified way:
A safe, runtime way to extend Linux kernel capabilities
Functions, Maps, Attachment Points, Syscall

11

What are BPF Programs?

More on BPF Programs

Berkeley Packet Filters around since 1990, extensions started Linux 3.18

Well, not really a program (no pid)...an event handler

A small piece of code, executed when an event occurs

In-kernel virtual machine executes the code

Assembly instruction set

See ‘man 2 bpf’ for details

12

The eBPF Instruction Set

Instructions
▪ 10x 64bit registers
▪ 512B stack
▪ 1-8B load/store
▪ conditional jump
▪ arithmetic
▪ function call

13

Helper functions
▪ forward/clone/drop packet
▪ load/store packet data
▪ load/store packet metadata
▪ checksum (incremental)
▪ push/pop vlan
▪ access kernel mem (kprobes)

Data structures
▪ lookup/update/delete

▪ in-kernel or from userspace
▪ hash, array, ...

BPF Kernel Hook Points

A program can be attached to:

kprobes or uprobes

socket filters

TAP or RAW (original tcpdump use case)

PACKET_FANOUT: loadbalance packets to sockets

seccomp

tc filters or actions, either ingress or egress

14

BPF Verifier

A program is declared with a type (kprobe, filter, etc.)

Only allows permitted helper functions

Kernel parses BPF instructions into a DAG

Disallows: back edges, unreachable blocks, illegal insns, finite execution

No memory accesses from off-stack, or from unverified source

Program ok? => JIT compile to native instructions (x86_64, arm64, s390)

15

In a very simplified way:
A safe, runtime way to extend Linux kernel capabilities
Functions, Maps, Attachment Points, Syscall

16

What are BPF Programs?

Developer Workflow

17

eBPF program written in C

Translated into eBPF
instructions (LLVM)

Loaded in kernel

Hooked at different levels of
Linux Networking Stack

(as an example)

HW/veth/tap

TAP/Raw

driver

netif_receive_skb()

TC / traffic control

Bridge hook

IP / routing

Socket (TCP/UDP)

BPF

BPF

BPF

Using Clang and LLVM in BCC

18

How BCC uses Clang

19

import bcc
b = bcc.BPF(“hello.c”)

clang::Rewriter => hello.c’

clang -c hello.c’ -o <memory>

clang -c hello.c -o <memory> llvm MCJIT => hello.o

b.load_func(...)

How BCC uses Clang

20

import bcc
bcc.BPF(“hello.c”)

BPFModule

clang pass 2
llvm::Module => IR

llvm PassManager
IR => -O3 => optimized IR

clang pass 1
- extract key/leaf types
- fixup tracing fn args
- fixup packet load/store
- bpf_map_create() => fd
- fixup map accesses w/ fd
- share externed maps b/w programs

clang::Rewriter

llvm MCJIT
IR => BPF bytecode

bpf_prog_load()

Rewrite Sample #1

#include <uapi/linux/ptrace.h>
int do_request(struct pt_regs *ctx, int req) {
 bpf_trace_printk("req ptr: 0x%x\n", req);
 return 0;
}

21

#include <uapi/linux/ptrace.h>
int do_request(struct pt_regs *ctx, int req) {
 ({
 char _fmt[] = "req ptr: 0x%x\n";
 bpf_trace_printk_(_fmt, sizeof_(fmt), ((u64)ctx->di));
 });
 return 0;
}

Rewrite Sample #2

#include <linux/sched.h>

#include <uapi/linux/ptrace.h>

int count_sched(struct pt_regs *ctx,

 struct task_struct *prev) {

 pid_t p = prev->pid;
 return p != -1;

}

22

Rewrite Sample #2

#include <linux/sched.h>

#include <uapi/linux/ptrace.h>

int count_sched(struct pt_regs *ctx,

 struct task_struct *prev) {

 pid_t p = ({
 pid_t _val;
 memset(&_val, 0, sizeof(_val));
 bpf_probe_read(&_val, sizeof(_val),
 ((u64)ctx->di) + offsetof(struct task_struct, pid));
 _val;
 });
 return p != -1;

}

23

Rewrite Sample #3

#include <bcc/proto.h>

struct IPKey { u32 dip; u32 sip; };

BPF_TABLE("hash", struct IPKey, int, mytable, 1024);

int recv_packet(struct __sk_buff *skb) {

 struct IPKey key;

 u8 *cursor = 0;

 struct ethernet_t *ethernet = cursor_advance(cursor, sizeof(*ethernet));

 struct ip_t *ip = cursor_advance(cursor, sizeof(*ip));

 key.dip = ip->dst;

 key.sip = ip->src;

 int *leaf = mytable.lookup(&key);

 if (leaf)

 *(leaf)++;

 return 0;

}

24

Rewrite Sample #3

#include <bcc/proto.h>

struct IPKey { u32 dip; u32 sip; };

BPF_TABLE("hash", struct IPKey, int, mytable, 1024);

int recv_packet(struct __sk_buff *skb) {

 struct IPKey key;

 u8 *cursor = 0;

 struct ethernet_t *ethernet = cursor_advance(cursor, sizeof(*ethernet));

 struct ip_t *ip = cursor_advance(cursor, sizeof(*ip));

 key.dip = bpf_dext_pkt(skb, (u64)ip+16, 0, 32);

 key.sip = bpf_dext_pkt(skb, (u64)ip+12, 0, 32);

 int *leaf = bpf_map_lookup_elem((void *)bpf_pseudo_fd(1, 3), &key);

 if (leaf)

 *(leaf)++;

 return 0;

}

25

IO Modules for Networking

26

Network Analytics Demo

▪ IO Visor is used to build a real-time,
distributed analytics platform that
monitors the health of a VXLAN
tunneling infrastructure

▪ Data plane component is inserted
dynamically in the kernel and
leveraged by the application to
report information to the user

▪ Example here https://github.
com/iovisor/bcc/tree/master/exampl
es/networking/tunnel_monitor

27

https://github.com/iovisor/bcc/tree/master/examples/tunnel_monitor
https://github.com/iovisor/bcc/tree/master/examples/tunnel_monitor
https://github.com/iovisor/bcc/tree/master/examples/tunnel_monitor
https://github.com/iovisor/bcc/tree/master/examples/tunnel_monitor

IO Module, users perspective

28

…

IO Module, developers perspective

29

…

…

IO Module, graph composition

30

•

31

Composing IO Modules

Using BCC for Tracing

32

Tracing Demo

https://github.com/iovisor/bcc

Linux eBPF Stack Trace Hack

Linux eBPF Off-CPU Flame Graph

33

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
http://www.brendangregg.com/blog/2016-01-18/ebpf-stack-trace-hack.html
http://www.brendangregg.com/blog/2016-01-18/ebpf-stack-trace-hack.html
http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html
http://www.brendangregg.com/blog/2016-01-20/ebpf-offcpu-flame-graph.html

Thank You!

34

Learn More and Contribute

https://iovisor.org

https://github.com/iovisor

#iovisor irc.oftc.net

@IOVisor

35

https://iovisor.org
https://iovisor.org
https://github.com/iovisor
https://github.com/iovisor

Backup Slides

36

Components of an IOV_Module

37

kernel

user

SDK runtime

eBPF
map1

map2

REST

bpf()

skbuff in

skbuff out

map
objectsC code

kernel helpers

kernel hooks

ifc
stats, etc.

module description

insns

Introducing IO Visor Project

38

IO Visor Project: What?

• A programmable data plane and development tools to simplify the creation of new
infrastructure ideas

• An open source project and a community of developers
• Enables a new way to Innovate, Develop and Share IO and Networking functions

Open Source & Community

Programmable Data Plane

• A place to share / standardize new ideas in the form of “IO Modules”

Repository of “IO Modules”

39

40

IO Visor Project Use Cases Example: Networking

▪ IO Visor is used to build a fully
distributed virtual network across
multiple compute nodes

▪ All data plane components are
inserted dynamically in the kernel

▪ No usage of virtual/physical
appliances needed

▪ Example here https://github.
com/iovisor/bcc/tree/master/exampl
es/distributed_bridge

Virtual/Physical
Appliances

Virtual
Network
Topology in
Kernel Space

https://github.com/iovisor/bcc/tree/master/examples/distributed_bridge
https://github.com/iovisor/bcc/tree/master/examples/distributed_bridge
https://github.com/iovisor/bcc/tree/master/examples/distributed_bridge
https://github.com/iovisor/bcc/tree/master/examples/distributed_bridge

