
Demystifying
Kubernetes
Resource
Management
Everything You’ve Always Wanted to
Know… But Were Afraid to Ask.

2

01.

Why Resources
Matter in K8s

02. 03. 04.

Deep Dive on CPU
+ Live Demo 😅🚀

Deep Dive on Mem
+ Live Demo 😬💥

Getting It Right In
Practice

Agenda

Reid Vandewiele
He/Him

Product Engineer @ StormForge
● 12+ years focus on IT automation

● Tacoma, WA

● Ultimate Frisbee, Mountaineering

The Kubernetes Resources Abstraction

5

The Resources Abstraction

A cluster has nodes

Nodes have resources Pods need resources

The Kubernetes Resources Abstraction

Why Resources Matter

Cgroups

Kubelet

Kube API User-facing Abstraction for
resource requests and limits

Nodes. Resource Requests
affect Pod Scheduling to nodes

Runtime Implementation of
requests & limits abstractions

Relevant Abstraction or Component Layers
Thinking About Resources

● Requests are the minimum resources a container asks for guaranteed access to

● Limits are the maximum resources a container is permitted to consume on a node

Resource Basics

Requests: 250m Limits: 500m

Guaranteed Burstable

Kube API

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - resources:
 requests:
 cpu: "250m"
 memory: "64Mi"
 limits:
 cpu: "500m"
 memory: "128Mi"

● Requests are the the only thing that matters when it comes to Node selection

● The Kubernetes Scheduler packs pods onto nodes according to each Node’s available resources and
each Pod’s resource requests

● The scheduler never overprovisions nodes as measured by Pod resource requests

Resource Basics
KubeletKube API

Requests: 250m

Scheduling Size

Scheduled
Workloads

● Overprovisioning of a node’s physical resources is technically possible whenever requests and limits
are not equal, including whenever limits are not set

● For many workload types, some degree of overprovisioning* is desirable for cost optimization

Resource Basics
KubeletKube API

Requests: 250m Limits: 500m

Scheduling Size Burstable

Scheduled
Workloads

To Overprovision, Or Not To Overprovision?
Kube API

Savings Reliability
Overallocation*

Resource Exclusivity
Overprovisioning
Resource Sharing

● What are the consequences of overprovisioning for CPU?

● What are the consequences of overprovisioning for Memory?

Is Overprovisioning Safe?

Requests: 250m Limits: 500m

Burstable

KubeletKube API

Scheduled
Workloads

Scheduling Size

Live Experiments Environment Overview

minikube
monitoring stack workloads under test

Experiment 1
Resource Settings and CPU Contention

Experiment 1 Review
✓ No Requests = No CPU time during contention

✓ Usage less than Requests = No interruption
during contention*

✓ No CPU time now = More CPU usage later
(potentially)

CPU Requests and the Completely Fair Scheduler

“A proportional share scheduler which divides the CPU time (CPU
bandwidth) proportionately between groups of tasks (cgroups)
depending on the priority/weight of the task or shares assigned to
cgroups.”

CgroupsKubeletKube API

● Kubernetes equates 1 CPU = 1024 CFS shares
● K8s assigns CFS shares to containers based on their CPU requests
● Important for the abstraction mental model:

No cgroup allocations except by Kubernetes

CPU Requests and the Completely Fair Scheduler

CgroupsKubeletKube API

Container Request Shares Effective

nginx-1 150m 153 284m

nginx-2 150m 153 284m

apl-backend 500m 512 953m

apl-cache 250m 256 476m

redis-1 0 -* -

redis-2 0 -* -
Flying Standby:

− redis-1
− redis-2

All Containers on a
2-CPU Node

Proportional CFS Share
Assignment

What About The Others?

CPU Limits and the Completely Fair Scheduler

● K8s assigns CFS “quotas” to every container based on the limits
● CFS quotas limit maximum CPU usage but enforcement can have

unexpected effects on latency
● It’s complicated…

CgroupsKubeletKube API

Image credit: JettyCloud @ Medium
“Making Sense of Kubernetes CPU Requests And Limits”

https://medium.com/@jettycloud/390bbb5b7c92

https://medium.com/@jettycloud/390bbb5b7c92

Requests are very important.
● Having CPU requests is a minimum guarantee of priority access

to the CPU, even during contention*
● Not having any CPU requests makes pods potentially subject to

complete CPU starvation

Limits aren’t as important.
● Limits aren’t necessarily needed for Noisy Neighbor reasons IF all

workloads have reasonable CPU requests (see above)
● Limits are most useful if your requests are wrong for some

workloads

LESSONS LEARNED:

On The Importance of CPU Requests and Limits

Experiment 2
Resource Settings and Memory Contention

Experiment 2 Review
✓ Containers with memory limits will be killed if

they exceed their individual limit

✓ Containers either get the memory they
allocate STAT, or something will get OOMkilled

✓ What gets OOMkilled? Not deterministic…

Node Memory Pressure and Eviction
● Node pressure occurs when certain signals exceed thresholds, such as memory.available

● Eviction currently applies only to incompressible resources like memory and disk.

● Kubelet will pick and evict pods that are using more resources than they requested. Evicted pods will be
rescheduled, probably on other nodes.

● This did not happen in the lab (probably)

KubeletKube API

Node Out-of-Memory (OOM) Behavior
● Linux OOM-Killer will pick processes to terminate if the node runs out of memory (not Kubelet).

● OOM-Killer selection is influenced by Cgroup settings. Lower QoS classes and pods that are using a
significant fraction of the memory on the node are towards the front of the line to be OOM-Killed.

● OOM-Killed containers will restart on the same node. They are not rescheduled.

● This is what happened in the lab (probably)

CgroupsKubeletKube API

Wait… so, why didn’t the Last State say OOMKilled?
CgroupsKubeletKube API

Great question.
Some light reading.

◀ Pod evictions, OOM scenarios and flows leading to them – Mihai Albert

Littledriver – Who murdered my lovely Prometheus container in K8s cluster? ▶

https://mihai-albert.com/2022/02/13/out-of-memory-oom-in-kubernetes-part-4-pod-evictions-oom-scenarios-and-flows-leading-to-them
https://engineering.linecorp.com/en/blog/prometheus-container-kubernetes-cluster

Requests are very important.
● Memory isn’t guaranteed by requests*, but having proper

requests sets the scheduler up for success when picking which
nodes to co-locate workloads on

● You should be more conservative with any over-provisioning of
memory, due to non-determinism of what happens when nodes
run out of it

Limits are helpful too.
● Limits can help ensure that when a workload uses excessively

more memory than it requests, that workload is what is
OOMKilled, and not an innocent co-located workload

LESSONS LEARNED:

On The Importance of Memory Requests and Limits

A Note on Cgroup Versions
CgroupsKubeletKube API

cgroup v1 cgroup v2

What About Other Kinds of Resources?
Kube API

● Ephemeral Storage works kinda like memory, but is often not specified

● Kubernetes permits extending the abstraction for additional resources using Device Plugins

○ GPU is the most commonly used additional resource

○ How overprovisioning works for other resources (i.e. GPUs) is outside the scope of this
presentation

● Further control over CPU affinity can be achieved via a Kubelet setting, the static policy for the CPU
Manager (more “exclusivity” than “sharing”).

Getting it Right in Practice

Getting it right is hard.

Typical Resource Management Journey

STAGE 1:
Don’t bother setting requests.
Falls down when performance
problems become too frequent.

STAGE 2:
One-size fits all approach.
Falls apart when low resource
efficiency becomes expensive.

STAGE 3:
Manually tune every workload.
Grueling or irregular; poor use of
engineering resources?

Policies that can influence Developer / Application Owner Behavior
● Use LimitRanges to lay down resource defaults
● Use ResourceQuotas to create per-namespace scarcity
● Use Kyverno to define and enforce your own policy requirements

Tools to enable them to be as successful as they can be
● Application Monitoring (APM) Tools and dashboards to show app owners their

workloads, and their real-world resource consumption
● Documentation or protocols that tell them what to do with that information

OPTION 1:

Influence App Owners to Invest Their Time and Effort

Typical Resource Management Journey

Stage 4:
Automate it.

STAGE 1:
Don’t bother setting requests.
Falls down when performance
problems become too frequent.

STAGE 2:
One-size fits all approach.
Falls apart when low resource
efficiency becomes expensive.

STAGE 3:
Manually tune every workload.
Grueling or irregular; poor use of
engineering resources?

How Would Automation Work?
● Observe and collect usage data
● Calculate tailored resource

settings for every workload
● Apply and keep settings

up-to-date autonomously as
requirements change over time

● Give human operators policy-level
ownership, rather than specific
settings ownership

OPTION 2:

How About Automating it?

STOP Setting CPU
and Memory
Requests in K8s

Let Machine Learning and
Automation do it for you.

Stop Setting CPU and Memory Requests.
Let intelligent automation do it for you.

OPTIMIZE LIVE
Automatic and Continuous Workload
Optimization for Kubernetes At Scale

Free Trial: app.stormforge.io/signup

https://app.stormforge.io/signup

Q&A
Thank you
Reid Vandewiele
Product / UX / DevRel
reid@stormforge.io

OPTIMIZE LIVElinkedin.com/in/reidmv

Stop Setting CPU and
Memory Requests.

Let intelligent automation do it
for you.

LinkedIn

