
How to Tame a 
Mastodon
David & Elizabeth Christensen | SCaLE 20x

Lessons for Postgres at Scale



How to Tame 
Mastodon



How to Tame 
Mastodon



How to Tame a 
Mastodon!



About us
David
Database Engineer
Postgres Consulting
Full stack dev
background

Elizabeth
Customer success
Marketing
Kansas City Postgres

@pg_dwc @sqlliz



Big Postgres
Large Data



Big Postgres
Transactions



Big Postgres
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Real Life 
Environment

OLTP Database

100 dev, no DBA

Heroku to Crunchy Bridge migration

25TB database with significant growth

15 replicas

WAL volume of 150GB/hr: 2-3 WAL files/sec

Transaction volume of 230M+/hr on primary alone





Challenges & 
Solutions

Maintenance needs to be done, but 
maintenance has risks

• Table size
• Transactions
• Replicas



Big Table 
Problems



Big Table 
Problem: 
Adding 
Columns

ALTER TABLE restaurant ADD COLUMN 
feedback TEXT 
DEFAULT compliments_to_the_chef()

Locks during rewrite



Solution: 
Multi-step 
column 
changes

• ALTER TABLE restaurant ADD COLUMN feedback

ADD COLUMN

• ALTER TABLE restaurant ALTER COLUMN feedback
DEFAULT compliments_to_the_chef()

ADD DEFAULT

• UPDATE TABLE restaurant SET feedback TO DEFAULT

UPDATE



Big Table 
Problem: 
Adding 
Constraints

ALTER TABLE 
favorite_bands ADD 
CONSTRAINT name_check
CHECK (name = 'Led Zeppelin')

Locks during validation



Solution: 
Postpone 
Validation

• ALTER TABLE favorite_bands ADD CONSTRAINT 
name_check CHECK (name = 'Led Zeppelin') NOT VALID

ALTER

• ALTER TABLE favorite_bands VALIDATE
CONSTRAINT name_check

VALIDATE



Big Table 
Problem: 
Index 
Creation

CREATE INDEX ON customers 
(last_name, first_name)

Blocks writes during index creation

The naïve approach is time consuming 
and locks



Solution: 
Create Index 
Concurrently

• ALTER Quick lock
• Runtime tradeoff
• You break it you clean it up

CREATE INDEX CONCURRENTLY



Big Table 
Problem: 
Unused 
Indexes

High index overhead

Some redundant indexes

Queries change



Solution: 
Index 
analysis/
cleanup

• Combine btrees where they make sense

Combine indexes

• Pg_stat_user_indexes
• Pg_statio_user_indexes

Look for unused indexes

• Unused on primary != unused in cluster
• Reset for active stats

Gather data on all nodes



Big Table 
Problem: 
Skewed 
Data

Falling back to seq scan

Still maintain whole index

Data skews



Solution: 
Partial 
indexes

Handy for data skew

CREATE INDEX foo … WHERE bar = 1

• Faster updates
• Only relevant data

Only has data for qual



Big Table 
Problem: 
Vacuum

Causing I/O performance degradation

Long & sporadic vacuums

Vacuum required



Solution: 
Vacuum-
related 
configuration

• Autovacuum_workers = 6
• Maintenance_work_mem = 30GB

Tune autovacuum

• autovacuum_vacuum_insert_scale_factor=0, 
autovacuum_vacuum_insert_threshold=<constant>

Per-table tuning

Target daily vacuums



Big Table 
Problem: 
Large 
single table

Recent vs Historical

Periodic Data Removal

Many Rows

Vacuum, Indexes



Huge table 
solution: 
Partitioning

• Queries don't need to know
• Can tune/index partitions individually

Break into smaller tables

• ATTACH PARTITION
• DETACH PARTITION
• Sometimes performance

Helps with data lifecycle management



Partitioning 
Caveats

Partitioner's 
Paradox

Not a magic 
bullet

pg_partman Migrating is 
a "project"



Big Table 
Problem: 
Wasted 
Table Space

Wasted space

Many column issue

Column Order affects Padding



Big table 
solution: 
Optimize 
Table Size

• Fixed-size, largest to smallest
• Variable length or NULLable last

Order by size

• (bool, bigint, bool, bigint, bool, bigint) = 72 bytes
• (bigint, bigint, bigint, bool, bool, bool) = 52 bytes
• 30% savings

Non-trivial

Caveats



High 
Transaction 
Challenges



High
Transaction 
Problems:
WAL 
Generation

Restore can't catch up with archive

No breathing room for replay

Archives single files



WAL Size 
Workarounds

• Async archive/restore
• Daemon mode

pgBackRest

• Switches to streaming
• Replica catches up

Force restore failure

• wal_segment_size

Change WAL segment size



High
Transaction 
Problems:
SERIAL 
limits

4 byte runs out at ~2 million

Running out of SERIAL ids



Solutions

Add 
bigints

• Need to see how much you need to fix

How much is affected

• Will get you double the ids

Go with negative ids

• 8 bytes is big enough for anyone

Use bigints for ids



High
Transaction 
Problems:
pgBouncer
Limits

100% usage

= Bottleneck



PgBouncer
solution: 
Multi-Bouncer

Use systemd to multiplex

(Semi-)Arbitrary numbers of concurrent PgBouncers



Multi-Bouncer



Read Replica 
Scaling 
Challenges



Many Replicas: 
Why?
• Reduce load on the primary
• Redundancy
• Different purposes:

• HA
• Load Balancing fast 

queries
• Reporting/Analytics
• Delayed Standby



Read Replica 
Problems:
Management

Manual

Inconsistent

Working with replicas at scale



Replica 
Management

Automate tool chains

Managed Postgres + APIs

Centralize Monitoring & Data Collection



Read Replica 
Problems:
Different 
Query 
Workloads

Replicas have different needs

Replicas have different performance



Solutions 
for separate 
query 
workloads

• Can't just look at primary
• Pg_stat_* and pg_statio_* views
• Pg_stat_statements, auto_analyze

Look at each machine

Tuning/analysis over time/trending

• Can write back to primary to give stats history
• Third-party services

Central point for information



Read 
Replica 
Problems:
Lag

Locking can cause lag

Need up to date information



Solutions 
for lag:
tuning

Statement timeouts

Max standby archive delay

Max standby streaming delay



Read Replica 
Problems:
Long 
running 
analytics

Logical replication not able to keep up

Queries can impact primary



Solutions for 
long analytics

• =off

Hot_standby_feedback

• Not streaming
• Dedicating specific replicas to analytics only

Archive only replica



How did we tame 
the Mastodon?
• Minimize locks
• Be smart about indexing
• Per table vacuum tuning
• Partition if you can
• Update schema to maximize 

space and reduce padding
• Look at multi pgBouncer
• Planned replicas



Thanks to
Greg Sabino Mullane
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Related links
Running Multiple PgBouncers

3 Tips for Large Postgres Databases

Integer Overflow and SERIAL limits

https://www.crunchydata.com/blog/postgres-at-scale-running-multiple-pgbouncers
https://opensource.com/article/23/2/manage-large-postgres-databases
https://www.crunchydata.com/blog/the-integer-at-the-end-of-the-universe-integer-overflow-in-postgres

