
How to Tame a 
Mastodon
David & Elizabeth Christensen | SCaLE 20x

Lessons for Postgres at Scale



How to Tame 
Mastodon



How to Tame 
Mastodon



How to Tame a 
Mastodon!



About us
David
Database Engineer
Postgres Consulting
Full stack dev
background

Elizabeth
Customer success
Marketing
Kansas City Postgres

@pg_dwc @sqlliz



Big Postgres
Large Data



Big Postgres
Transactions



Big Postgres
Replicas



Real Life 
Environment

OLTP Database

100 dev, no DBA

Heroku to Crunchy Bridge migration

25TB database with significant growth

15 replicas

WAL volume of 150GB/hr: 2-3 WAL files/sec

Transaction volume of 230M+/hr on primary alone





Challenges & 
Solutions

Maintenance needs to be done, but 
maintenance has risks

• Table size
• Transactions
• Replicas



Big Table 
Problems



Big Table 
Problem: 
Adding 
Columns

ALTER TABLE restaurant ADD COLUMN 
feedback TEXT 
DEFAULT compliments_to_the_chef()

Locks during rewrite



Solution: 
Multi-step 
column 
changes

• ALTER TABLE restaurant ADD COLUMN feedback

ADD COLUMN

• ALTER TABLE restaurant ALTER COLUMN feedback
DEFAULT compliments_to_the_chef()

ADD DEFAULT

• UPDATE TABLE restaurant SET feedback TO DEFAULT

UPDATE



Big Table 
Problem: 
Adding 
Constraints

ALTER TABLE 
favorite_bands ADD 
CONSTRAINT name_check
CHECK (name = 'Led Zeppelin')

Locks during validation



Solution: 
Postpone 
Validation

• ALTER TABLE favorite_bands ADD CONSTRAINT 
name_check CHECK (name = 'Led Zeppelin') NOT VALID

ALTER

• ALTER TABLE favorite_bands VALIDATE
CONSTRAINT name_check

VALIDATE



Big Table 
Problem: 
Index 
Creation

CREATE INDEX ON customers 
(last_name, first_name)

Blocks writes during index creation

The naïve approach is time consuming 
and locks



Solution: 
Create Index 
Concurrently

• ALTER Quick lock
• Runtime tradeoff
• You break it you clean it up

CREATE INDEX CONCURRENTLY



Big Table 
Problem: 
Unused 
Indexes

High index overhead

Some redundant indexes

Queries change



Solution: 
Index 
analysis/
cleanup

• Combine btrees where they make sense

Combine indexes

• Pg_stat_user_indexes
• Pg_statio_user_indexes

Look for unused indexes

• Unused on primary != unused in cluster
• Reset for active stats

Gather data on all nodes



Big Table 
Problem: 
Skewed 
Data

Falling back to seq scan

Still maintain whole index

Data skews



Solution: 
Partial 
indexes

Handy for data skew

CREATE INDEX foo … WHERE bar = 1

• Faster updates
• Only relevant data

Only has data for qual



Big Table 
Problem: 
Vacuum

Causing I/O performance degradation

Long & sporadic vacuums

Vacuum required



Solution: 
Vacuum-
related 
configuration

• Autovacuum_workers = 6
• Maintenance_work_mem = 30GB

Tune autovacuum

• autovacuum_vacuum_insert_scale_factor=0, 
autovacuum_vacuum_insert_threshold=<constant>

Per-table tuning

Target daily vacuums



Big Table 
Problem: 
Large 
single table

Recent vs Historical

Periodic Data Removal

Many Rows

Vacuum, Indexes



Huge table 
solution: 
Partitioning

• Queries don't need to know
• Can tune/index partitions individually

Break into smaller tables

• ATTACH PARTITION
• DETACH PARTITION
• Sometimes performance

Helps with data lifecycle management



Partitioning 
Caveats

Partitioner's 
Paradox

Not a magic 
bullet

pg_partman Migrating is 
a "project"



Big Table 
Problem: 
Wasted 
Table Space

Wasted space

Many column issue

Column Order affects Padding



Big table 
solution: 
Optimize 
Table Size

• Fixed-size, largest to smallest
• Variable length or NULLable last

Order by size

• (bool, bigint, bool, bigint, bool, bigint) = 72 bytes
• (bigint, bigint, bigint, bool, bool, bool) = 52 bytes
• 30% savings

Non-trivial

Caveats



High 
Transaction 
Challenges



High
Transaction 
Problems:
WAL 
Generation

Restore can't catch up with archive

No breathing room for replay

Archives single files



WAL Size 
Workarounds

• Async archive/restore
• Daemon mode

pgBackRest

• Switches to streaming
• Replica catches up

Force restore failure

• wal_segment_size

Change WAL segment size



High
Transaction 
Problems:
SERIAL 
limits

4 byte runs out at ~2 million

Running out of SERIAL ids



Solutions

Add 
bigints

• Need to see how much you need to fix

How much is affected

• Will get you double the ids

Go with negative ids

• 8 bytes is big enough for anyone

Use bigints for ids



High
Transaction 
Problems:
pgBouncer
Limits

100% usage

= Bottleneck



PgBouncer
solution: 
Multi-Bouncer

Use systemd to multiplex

(Semi-)Arbitrary numbers of concurrent PgBouncers



Multi-Bouncer



Read Replica 
Scaling 
Challenges



Many Replicas: 
Why?
• Reduce load on the primary
• Redundancy
• Different purposes:

• HA
• Load Balancing fast 

queries
• Reporting/Analytics
• Delayed Standby



Read Replica 
Problems:
Management

Manual

Inconsistent

Working with replicas at scale



Replica 
Management

Automate tool chains

Managed Postgres + APIs

Centralize Monitoring & Data Collection



Read Replica 
Problems:
Different 
Query 
Workloads

Replicas have different needs

Replicas have different performance



Solutions 
for separate 
query 
workloads

• Can't just look at primary
• Pg_stat_* and pg_statio_* views
• Pg_stat_statements, auto_analyze

Look at each machine

Tuning/analysis over time/trending

• Can write back to primary to give stats history
• Third-party services

Central point for information



Read 
Replica 
Problems:
Lag

Locking can cause lag

Need up to date information



Solutions 
for lag:
tuning

Statement timeouts

Max standby archive delay

Max standby streaming delay



Read Replica 
Problems:
Long 
running 
analytics

Logical replication not able to keep up

Queries can impact primary



Solutions for 
long analytics

• =off

Hot_standby_feedback

• Not streaming
• Dedicating specific replicas to analytics only

Archive only replica



How did we tame 
the Mastodon?
• Minimize locks
• Be smart about indexing
• Per table vacuum tuning
• Partition if you can
• Update schema to maximize 

space and reduce padding
• Look at multi pgBouncer
• Planned replicas



Thanks to
Greg Sabino Mullane

Keith Fiske

Samantha Wheatley



Related links
Running Multiple PgBouncers

3 Tips for Large Postgres Databases

Integer Overflow and SERIAL limits

https://www.crunchydata.com/blog/postgres-at-scale-running-multiple-pgbouncers
https://opensource.com/article/23/2/manage-large-postgres-databases
https://www.crunchydata.com/blog/the-integer-at-the-end-of-the-universe-integer-overflow-in-postgres

