
Popping Kernels for Linux 
Distributions
Making Linux kernel builds and the life of a 
distro Linux kernel maintainer

Neal Gompa



Who am I? ● Open Source Advocate
● Owner and Principal at Velocity Limitless
● Contributor to Fedora, CentOS, openSUSE, and 

Mageia
○ Member of Fedora Engineering Steering 

Committee (FESCo)
○ Member of Fedora Workstation, Fedora Cloud, 

and Fedora Server WGs
○ Chair of Fedora KDE SIG
○ Co-chair of CentOS Hyperscale SIG
○ Member of CentOS Alternative Images SIG
○ Member of the openSUSE Board
○ Member of the openSUSE Heroes (Infrastructure)
○ Member of the Mageia Council and Mageia.org 

Board
● Contributor to RPM, DNF, KIWI, Koji, Open Build 

Service, and various other similar projects
● KDE contributor

○ Member of KDE, e.V. and X.Org Foundation
● Co-host of the Sudo Show podcast

https://velocitylimitless.com
https://fedoraproject.org/
https://www.centos.org/
https://www.opensuse.org/
https://www.mageia.org/
https://tuxdigital.com/podcasts/sudo-show/


The Linux kernel



The Linux kernel is (not?) special

The Linux kernel is simple:

● Written primarily in C and assembly
● Has no external runtime dependencies
● All subsystems and drivers are included in the 

kernel
● Is substantially well-documented

The Linux kernel is complex:

● Newly adding Rust to the mix of languages
● Builds user-space components that are tightly 

coupled to the kernel built
● All subsystems and drivers are included in the 

kernel
● The build tooling is sufficiently complicated to 

necessitate its own bespoke programs



Building the Linux kernel for yourself…

Typically, when building the kernel for yourself, there 
are a few reasonable choices:

● Seeding the build from your running kernel 
(e.g. make localmodconfig)

● Seeding the build from an existing kernel (e.g. 
make olddefconfig)

● Building the kernel with all the things (e.g. 
make allmodconfig)

And there’s the slightly less reasonable choice of 
doing it interactively and selecting everything 
individually (e.g. make xconfig)

Screenshot of make xconfig (credit: Wikipedia)



Building the Linux 
kernel for yourself… 
is a lot of work!



Building the Linux 
kernel for yourself… 
is a lot of work!

So far, this is only about the simple case of building a 
kernel once. Maintaining that kernel over time for just 
yourself means repeating this process every time a 
new release is made (provided you wish to update).

And because of how the kernel is developed, build 
options do not offer stability and need to be evaluated 
again each time a new kernel is being built. It can get 
more complex when managing patches without some 
kind of mechanism to track patches applied to 
separate upstream and personal changes.

And while the kernel can wrap the build into packages 
to install on your system (using e.g. make 
binrpm-pkg), that does not mean the packaging is 
necessarily correct for your distribution and integrates 
with everything else you have.



The Linux kernel for distributions



Building the Linux 
kernel for 
distributions…

Linux distributions go through some of the same 
processes for building and maintaining kernel 
packages, but there are added duties that make things 
more complex:

● Tracking build options based on features, 
architectures, and distribution needs

● Executing kernel builds in an isolated and 
reproducible way

● Integrating the built kernels into the distribution 
machinery

● Backporting fixes and features to align the 
kernel to userspace needs and lifecycle 
requirements

These result in distributions implementing tooling on 
top of the Linux kernel build to enhance it for these 
needs.



Building the Linux kernel for Red Hat distributions

Linux distributions in the Red Hat family have a central 
source repository for their Linux kernel sources that contains 
the merged trees of the Linux kernel and the packaging code 
for Red Hat distributions. This repository is known as the 
Always Ready Kernel (or ARK for short). This refers to the fact 
the tree contains an “always-ready” to release tree to create 
the RHEL kernel, which is generally a long-term maintained 
derivative of the mainline Linux kernel code.

The redhat folder contains all the distribution kernel build 
scripts and related files. A notable feature of this setup is that 
it contains its own processing logic for generating the kernel 
build configuration that includes a layering model to allow 
common, per-architecture, and per-distribution settings to be 
made and maintained easily.

https://gitlab.com/cki-project/kernel-ark


Building the Linux kernel for Fedora Asahi Remix

The Fedora Asahi Remix is a derivative of Fedora Linux 
that is optimized for Apple Silicon systems, such as the 
Macs released from 2020 onward.

The kernel sources for this comprises of three major 
changes:

● A large patch set from AsahiLinux/linux targeting 
the major Linux kernel version (e.g. 6.6)

● Configuration changes to turn on Asahi Linux 
specific code

● Enabling the 16k flavor for AArch64 kernel builds

The ARK model helps us by allowing us to reliably 
maintain this in a way that minimizes any split-brain 
effect.

https://asahilinux.org/fedora


Building the Linux kernel for Fedora Asahi Remix

The challenges in developing and maintaining this kernel do 
not start at the beginning. The problems come when moving 
to new kernel versions. Since Fedora Asahi Remix tracks 
Fedora Linux, it also inherits the policy of aggressively 
updating to new kernel releases. 

Because the kernel maintains no stability in its own code, 
each cycle where we have to maintain our patch set for the 
kernel takes a lot of time to prepare as patches may need to 
be completely rewritten in some circumstances, and this is 
semi-common!

The result is that Fedora Asahi Remix has to lag a lot from 
Fedora Linux because it takes time and effort to rewrite and 
retest everything. Sometimes it means we skip a whole kernel 
series. It also can mean we observe difficult-to-triage bugs 
because of the intersection of mainline code and custom 
code interacting poorly.



Building the Linux kernel for CentOS Hyperscale

CentOS Hyperscale is built on CentOS Stream, the 
immediate upstream for Red Hat Enterprise Linux. This 
means that by default CentOS Stream provides the 
kernel that is used by Red Hat Enterprise Linux (RHEL).

The RHEL kernel is derived from a specific Linux kernel 
version and features and fixes are backported in such a 
way that behavioral and API stability is somewhat 
preserved.

Building a variant with different features is very difficult 
in this environment as it becomes necessary to do the 
same. Each time it needs to be done, it becomes more 
difficult than the previous time. In the end, it became 
untenable.



Building the Linux kernel for CentOS Hyperscale

CentOS Hyperscale is built on CentOS Stream, the 
immediate upstream for Red Hat Enterprise Linux. 
This means that by default CentOS Stream provides 
the kernel that is used by Red Hat Enterprise Linux 
(RHEL).

But that does not mean CentOS Hyperscale has to 
use the RHEL kernel. Instead this is branched 
directly from the ARK repository to reduce the delta 
down to just configuration changes to turn on 
features.

With no significant patches and no non-merged 
patches, moving to new releases can happen very 
quickly.



What about other 
Linux 
distributions?

We primarily discussed the Red Hat family of distributions and their 
processes, but other Linux distributions have their own approaches:

● SUSE distributions use a repository (confusingly called 
kernel-source) containing scripts and patch queues for 
generating kernel packaging based on a target mainline kernel 
release. This exports a “prepared” source tree and a submitted 
package to the kernel development project on the openSUSE 
Build Service. 

● Debian uses a packaging repository that contains a Makefile 
that dynamically constructs the build flags and options based 
on the dpkg vendor, target architecture, and kernel image 
variants. To build the package, the sources must be 
downloaded and merged separately with the packaging 
repository.

● Ubuntu uses a variant of the Debian style, except with the 
sources merged for similar reasons to why ARK is done that 
way. Each Ubuntu version has its own repository named after 
its codename (e.g. Ubuntu 24.04 has the “noble” repository)

● Arch, Mageia, and OpenMandriva all have simpler packaging 
schemes that merely use a unified config file that is updated 
alongside kernel version updates. This is the closest to how 
an individual would build the kernel.

https://github.com/openSUSE/kernel-source
https://github.com/openSUSE/kernel
https://build.opensuse.org/package/show/Kernel:HEAD/kernel-source
https://build.opensuse.org/package/show/Kernel:HEAD/kernel-source
https://salsa.debian.org/kernel-team/linux
https://code.launchpad.net/~ubuntu-kernel/ubuntu/+source/linux/+git/noble
https://gitlab.archlinux.org/archlinux/packaging/packages/linux
https://svnweb.mageia.org/packages/cauldron/kernel/current/
https://github.com/OpenMandrivaAssociation/kernel


Building the Linux kernel 
for distributions is about 
the long haul!



Building the Linux 
kernel for 
distributions is 
about the long haul

At the end of the day, Linux distribution package 
maintainers optimize for minimizing effort over the 
long-term, which leads to attempting to set up things 
to require as little thinking after the initial setup to 
support their needs.

This drives many Linux distributions have very 
complex packaging for their Linux kernel packages. 
After the initial setup of the packaging, every change 
needs to be easily tracked, testable, and revertable (if 
needed).

Despite the different ways distributions package the 
Linux kernel, these characteristics are often visible in 
their maintenance strategies.



The End
www.velocitylimitless.com

http://www.velocitylimitless.com

