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A few words about me!

Hichem Kenniche, 

OSS Product Architect @Instaclustr (part of NetApp)

Previously at:
• Databricks

• Capgemini Invent

• Sony PlayStation



Disclaimer 

• This is not a contribution to any OSS project !  

• My vision of things is necessarily biased ! 

• Most of this is work is based on the principles of OSS, open data, and a culture of 
knowledge sharing 

• (Human) Learning is a Lifelong WIP … 



Our agenda for today

● The fundamentals of Real-Time ML.

● The biggest challenges facing Data teams.

● The motivation behind running Spark on Kubernetes

● Some challenges of Running Spark on Kubernetes and solutions

● Conclusion and takeaways 



The fundamentals of Real-Time 
ML.



Finding the shortest, fastest Cycling Route



Finding the shortest, fastest, least traffic? 



Finding the shortest, fastest, least traffic! 



Finding the shortest, fastest, least traffic!



Finding the Least Air Pollution Exposure Cycling Routes



Finding the Least Air Pollution Exposure Cycling Routes



Finding the Least Air Pollution Exposure Routes (in real time)



Real-time machine learning: the 
application of machine learning models 
to generate predictions or decisions in 
real-time and adapt to the changing 
environment. 

Finding the Least Air Pollution Exposure Routes (in real time)



Real-time Machine Learning Platform



The biggest challenges 
facing Data teams.



Real-time Machine Learning Challenges

Feature Engineering

Incremental Learning
(online learning)

Model Updating

Model / Data Drift

Stream Processing

Scalability

Performance Evaluation

Latency

Monitoring

Distributed Training & 
Inference

MLOps
Resource Management

/ Cost



Real-time Machine Learning Challenges

Real-time machine learning challenges 
(our experience) are largely an 
infrastructure problem.

Stream Processing

Scalability

Latency

Monitoring

Distributed Training & 
Inference

Resource Management
/ Cost



Solving some Real-time Machine Learning Challenges

Addressing these challenges requires 
a significant investment in advanced 
(OSS) technologies. 

Spark on k8s:

• Stream processing

• Training 

• Scalability  & Latency 

• Resource Efficiency



The motivation behind 
running Spark on kubernetes



BI

Object stores Data warehouses Streams SQL/NoSQL
databases

Python Scala/Java SQL

Fast*
Massively 

parallelizable, 
efficient 

read and write

MLETL/ELT Real-time

Easy
Interfaces with 

well-known 
programming 

languages

Versatile
Across multiple use 

cases 

Apache Spark is the #1 analytics engine for Big Data & AI



The role of resource manager in a Spark cluster

Spark depends on cluster 
manager for orchestration 
of a job on a cluster

 



Kubernetes is the latest cluster manager for Spark

Standalone: built-
in, limited 

functionalities

Apache Mesos: 
deprecated as of 

Spark 3.2.0

Hadoop YARN: 
most widely used 

today

Kubernetes: 
most popular 
among new 

deployments



The Spark on Kubernetes Journey

Feb 2018 - Spark 2.3

Initial support released for 

Spark on Kubernetes

June 2020 - Spark 3.0

Dynamic Allocation,  Local code 

upload, Kerberos Support

Oct 2021  - Spark 3.2 

Dynamic PVC mounting and reuse, Faster S3 

Writes (Magic Committer enabled)

Nov 2018 - Spark 2.4

Client Mode, Volume Mounts, 

PySpark and R support

March 2021 - Spark 3.1
Spark on Kubernetes generally available

Graceful node shutdown, NFS mounts, 
Dynamic Persistent Volume Claims

June 2020- Spark 3.3 
Executor Rolling in Kubernetes 

environment, Support Customized 
Kubernetes Schedulers

Apr 2023  - Spark 3.4 

PVC-oriented executor pod allocation

Spark 3.5 
Upgrade kubernetes-

client



Spark on YARN: architecture & pain points

Global Spark version and shared libraries
● You’ll have a Spark 2.4 cluster, a Spark 3.0 

cluster, a Spark 3.1 cluster.
● Transient clusters are recommended for 

stability, but increase costs.

Limited Docker image support*
● Environment is built from AMIs and bash 

scripts, flaky runtime library installation
● Debugging is painful - there’s no way to run 

Spark locally, environment is subtle

Resource Overhead 
● Slow startup time
● YARN master node, YARN Node Mgr are JVM 

processes using a lot of resources.



Spark on Kubernetes: architecture & benefits

Native Dockerization
● Simpler dependency management
● Reliable executions across environments 

(locally during development, staging, production)
● Faster startup time

A single long-running cluster 
● Quick to scale up (and down) based on load
● Mix different Spark versions
● Mix Spark and non-Spark apps
● Mix use cases (notebooks, batch/streaming jobs) 

A standard, agnostic infrastructure layer
● Reduce lock in
● Simplify your operations
● Leverage the open-source tools from the cloud-native 

ecosystem



Two ways to run Spark apps on k8s

● “Vanilla” way from Spark main open source 
repo

● Requires Spark distribution on client

● Configs spread between Spark config 
(mostly) and k8s manifests

● Less pod customization support (improving)

● App management is more manual

● Open-sourced by Google (but works on any 
platform)

● Configs in k8s-style YAML with sugar on top 
(configmaps, volumes, affinities)

● Tooling to read logs, kill, restart, schedule 
apps

● Requires a long-running system pod

spark-on-k8s operatorSpark-submit



https://aws.amazon.com/fr/blogs/containers/optimizing-spark-performance-on-kubernetes/

https://aws.amazon.com/fr/blogs/containers/optimizing-spark-performance-on-kubernetes/


Some challenges of 
running Spark on kubernetes 
and solutions



Challenges in the context of R-L M-L 

• Monitoring 

• Scalability

• Latency

• Models Training



Monitoring: logs, logs and more logs

Key information is buried under a lot of noisy one.

• Spark event/driver/executor logs.
• kubernetes logs
• Hard to reconcile with Spark jobs/stages/tasks

Solution
• Logs shipping tools : fluentbit & logstach 
• Prometheus: Spark has a built-in Prometheus



Scalability

Key factors to consider

• Cluster sizing, infra choice/specs. 

• Dynamic Allocation

• Shuffle data (NO external shuffle service YET )

Driver, Spark 3.2 Spark executor pod

Spark executor pod

Driver, Spark 3.4 Spark executor pod

Spark executor pod

Driver, Spark 3.5 Spark executor pod

Spark executor pod



Scalability: the right sizing 

For the sizing: 

• Continuous and repeated exercise: know your 
data sources 

• When selecting the cluster focus on enhancing 
parallelism in relation to the source.

• Streaming is CPU-bounded, State matters too 
(avoid spills)

• Deep Learning models with relatively long 
training and inference time: mix CPU with GPU 
(when required).



Scalability: Dynamic Allocation ( A two-sided problem)

Dynamic Allocation in Spark Structured 
Streaming
• Designed for batch jobs, it is compatible with 

batch and Spark structured streaming. Works 
poorly for certain applications !

  

Dynamic Allocation (within k8s )
• This feature may cause issues with Spark 

Scalability on k8s ! 

[SPARK-24815 ] Structured Streaming should 
support dynamic allocation

mailto:https://issues.apache.org/jira/browse/SPARK-41515


Scalability: Shuffle data 

External shuffle service for Spark on kubernetes is 
not supported yet. There are 4 options (+1): 

• Cloud Shuffle Storage Plugin for Apache Spark - AWS Glue

• IBM/spark-s3-shuffle: Shuffle plugin for Apache Spark and S3 
compatible service

• GitHub - oap-project/remote-shuffle: Spark shuffle plugin for 
support shuffling data through a remote Hadoop-compatible 
file system (Intel)

• Apache Spark on Kubernetes - Local Storage (main project)

• AWS S3 CSI driver and High-Performance Storage – S3 Express 
One Zone, AWS  

IBM Spark S3 Shuffle plugin is our choice:

• Supports Spark versions 3.2 to 3.4. Successfully 
tested with Spark 3.5.

• To support different cloud vendors, the 
corresponding Hadoop connector needs to be added 
to the classpath.

https://docs.aws.amazon.com/glue/latest/dg/cloud-shuffle-storage-plugin.html
https://github.com/IBM/spark-s3-shuffle
https://github.com/IBM/spark-s3-shuffle
https://github.com/oap-project/remote-shuffle
https://github.com/oap-project/remote-shuffle
https://github.com/oap-project/remote-shuffle
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://docs.aws.amazon.com/eks/latest/userguide/s3-csi.html
https://aws.amazon.com/s3/storage-classes/express-one-zone/
https://aws.amazon.com/s3/storage-classes/express-one-zone/


Latency

Key factors to consider
• Spark configurations.  
• Sub-second latency expectations are a challenge
• Stateful vs Stateless Pipelines

Consider the following: 
• Use only simple computations involving data 

transformation or enrichment !

• Always use a message bus (e.g., Apache Kafka 

or Apache Pulsar) and fast key-value stores (e.g., 
Apache Cassandra or Redis)

• RocksDB state store provider



M-L Training

Key factors to consider

• Most ML frameworks were designed for 
single-node environments

• Spark MLlib is lagging behind ! 



M-L Training

Consider the following: 

• Use TensorFlow, Keras, and PyTorch

• Accelerator, Distributed ML & GPU :
• Horovod
• NIVIDIA RAPIDS Accelerator for Spark

Source: RAPIDS Accelerator for Apache Spark (NVIDIA) 

https://docs.nvidia.com/spark-rapids/index.html


M-L Training (Batch) 

With the default scheduler:  workloads experience 
higher rates of resource starvation, leading to 

performance degradation or failure !

Solutions for the default scheduler:

• Use custom k8s Scheduler support. Enabling 
YARN-like capabilities such as queue, gang 
scheduling, etc



M-L Deployment & Serving (WIP)

Key factors to consider

• Package the whole ML tech stack 
(dependencies) and the code for ML model 
prediction into a Docker container.

• Model optimization and Model compression

Source: https://ml-ops.org/



Conclusion and takeaways



Why Spark on k8s integration is Important for R-L M-L?

• Native Integration

• k8s best practices apply to Spark on k8s for free!

• Scalability, Latency, Fault-tolerance

• Models Training and Serving 

• Integration with a rich ecosystems



Key takeaways 

• Use the k8s Spark operator 

• Design and build your logging and monitoring stack 

• Keep adhering to Spark best practices compatible with k8s

• Use the rich k8s (Monitoring, Mlops, etc) ecosystem

• Contribute to the OSS (share your experiences, code, ideas, challenges ) 

• Keep Cycling …



Thank you


