
Shaun Hopper
Production Engineer

NISHchint Raina
Production Engineer

FBInstance to 
MetaInstance
Our Journey from Long-Running Mutable to Immutable Instances



Who are we?

WHO ARE WE?

● Cloud Foundation
● ~5 Engineers building the compute platform
● The rest of the company uses it



Why are we here?



The story begins with fbinstance



fbinstance
● Cloud was new to Facebook.
● Needed a common platform that looked like a Facebook host

○ CentOS-based
○ Chef
○ DNF registries

● Wanted to reuse and extend familiar tooling
● Needed ability to talk to services on-prem

fbinstance



What did an fbinstance host look like?



FBINSTANCE



fbinstance problems

fbinstance had problems
Operational Burdens with Chef

Reliance on On-Prem Network Connectivity

Dependency Management

Tight Infrastructure-as-Code (IaC) Coupling



fbinstance problems



Operational Burdens with Chef
● Had no support for staged rollouts of changes, and couldn’t roll back
● One recipe breaking could hold up rest of the deployment
● Existing testing functionality was partially supported and inadequate for non-homogenous hosts
● Always playing catch-up with internal chef cookbooks

○ Many cookbooks written came with on-prem assumptions 
○ Cookbooks in state of frequent changes 
○ Only had support for centos, we needed to support for other distros

fbinstance problems



Dependency Management
● RPM dependencies were installed at multiple stages of the hosts lifecycle, increasing conflicts.

○ Internal CentOS build time
○ AMI build time
○ Bootstrap time
○ Chef runtime

● Testing AMIs in CI/CD had limited reproducibility due to chef’s constantly moving nature.
● The "15 minute upgrade problem” vs "6 month upgrade problem"

fbinstance problems



Infra-as-Code (Terraform)
● The ability to bootstrap fbinstance depended on using 

our custom terraform modules.
● Users did their customizations to fbinstance through 

terraform.
● We couldn’t control when terraform was actually run in 

every account.

fbinstance problems



On-prem Connectivity Reliance
● In order to talk to on-prem services, everything previously mentioned had to work flawlessly. 
● Compliance and security requirements to talk to on-prem are strict.
● Continuously updating hosts required talking to on-prem.

fbinstance problems





So where do we go from here?



We knew where we wanted to be



We knew we wanted immutability
● All bootstrapping dependencies are baked into the image.
● Once bootstrapped, it stays unchanged during the course of its lifetime.
● Updating the instance requires deploying a new build. 
● Instead of chef, we rely on CI/CD and shorter running instances. 

WHERE DO WE GO FROM HERE?



We knew we wanted to support multiple distros
● Beyond generic compute, support a broader set of use cases (HPC, Kubernetes).
● A consistent way to:

○ Bootstrap a host.
○ Package, fetch, install and run our platform daemons.

WHERE DO WE GO FROM HERE?



So how can we get there?



��



Why systemd + containerd?



systemd + containerd
● Systemd provide a consistent bootstrap story & requires minimal changes across distros.
● OCI containers + containerd keeps our platform binaries portable.
● Instead of maintaining binaries per distro, we maintained a single container per binary.

SYSTEMD + CONTAINERD



Could we pull it off?
● OCI Container tooling was maturing due to ongoing investments in supporting kubernetes.
● It had put us into an immutable first mindset.
● We could consolidate the teams efforts around containerizing our platform.

SYSTEMD + CONTAINERD



We could



We called it… Metainstance



Building Metainstance
● We stripped down the functionality of what chef does on the host to near 0.
● We put systemd in charge of bootstrapping the host.
● We put all platform daemons into their own containers.

METAINSTANCE



METAINSTANCE



METAINSTANCE



What did it give us?



Portability
● It scaled our ability to support multiple host distros for specific use cases.

○ We could now support Ubuntu (HPC) and Amazon Linux (EKS) in addition to CentOS.
● Our platform daemons could run in kubernetes too.

WHAT IT GAVE US



METAINSTANCE



KUBERNETES



Predictability
● Instance runtime became predictable.
● We could deterministically catch failures at CI/CD test time. 
● Rolling back became possible, just redeploy an older version.

WHAT IT GAVE US



Simplicity
● We could lean more on industry standards.
● We didn’t have to support multiple stacks of bespoke tooling.

○ We leveraged existing AMI/Container tooling for building & deployment.
○ We invested less into the ecosystem of chef tooling.

● Leaner Terraform Module.

WHAT IT GAVE US



But it wasn’t all great
● Supporting separate distros meant wrangling differences in systemd/cloud-init versions.
● New learning curves:

○ Docker became a barrier to entry.
○ Bash isn’t as expressive as ruby (chef).
○ Frequent CI/CD for hosts was a new concept.

TAKING ROSE-TINT GLASSES OFF



Takeaways

Moving host configuration to build time results in 
fewer alerts and incidents, more sleep!

By containerizing the entire platform, integrating new 
functionality (security agents, telemetry agents, etc) 
becomes easy. Just add it to the MetaInstance layer. 

Most failures become CI pipeline issues, less urgency to 
respond.

If you have to support functionality in kubernetes anyway, 
you may as well use the same containers on your instances.



Questions?
THANK YOU FOR YOUR TIME



meta.com/blank
Start building your solution today.


