
Observability 3 ways
Logging, Metrics and Tracing

@adrianfcole
works at Pivotal
works on Zipkin

Unifying theory

• Logging - recording events

• Metrics - data combined from measuring events

• Tracing - recording events with causal ordering

Everything is based on events

credit: coda hale

Tracing
Request
scoped

Logging
Events

Metrics
Aggregatable*

credit: peter bourgon

Focal areas

Let’s use latency to
compare a few tools

• Log - event (response time)

• Metric - value (response time)

• Trace - tree (response time)

Logs show response time

[20/Apr/2017:11:07:07 +0000] "GET / HTTP/1.1" 200
7918 "" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:
1.8.1.11) Gecko/20061201 Firefox/2.0.0.11 (Ubuntu-
feisty)" **0/95491**

Look! this request took 95 milliseconds!

Metrics show response time

Is 95 milliseconds slow?
How fast were most
requests at 11:07?

Alert on max, performance
tune to high percentiles.

@jon_k_schneider

What caused the request to take 95
milliseconds?

▣────────────95491 microseconds───────────────────────────▣
│ │
 │ │
 ▣──────────── 55231 microseconds───────────▣
 │ │
 │ │
 │ │

Traces show response time

First thoughts…

• Log - easy to “grep”, manually read

• Metric - can identify trends

• Trace - identify cause across services

How do you write timing
code?

• Log - time and write formatted or structured logs

• Metric - time and store the number

• Trace - start, propagate and finish a “span”

Jargon alert! span == one operation in the call graph

Logging response time

Find the thing you want and time it, format the result
into a log statement.

long tookMs = TimeUnit.NANOSECONDS.toMillis(System.nanoTime() - startNs);

logger.log("<-- " + response.code() + ' ' + response.message() + ' '
 + response.request().url() + " (" + tookMs + "ms" + (!logHeaders ? ", "
 + bodySize + " body" : "") + ')');

Metric’ing response time

Initialize something to record duration and add to it

def apply(request: Req, service: Service[Req, Rep]): Future[Rep] = {
 val sample = Timer.start(Clock.SYSTEM)

 service(request).respond { response =>
 sample.stop(
 Metrics.timer(“request.latency”, “code”, response.status())
)
 }
}

Tracing response time

Create and manage a span. Pass it on via headers

Span span = handler.handleReceive(extractor, httpRequest);
try {
 chain.doFilter(httpRequest, httpResponse);
} finally {
 servlet.handleAsync(handler, httpRequest, httpResponse, span);
}

Impact of timing code

• Log - ubiquitous apis, but requires coordination

• Metric - easy, but least context

• Trace - hardest, as identifiers must be passed
within and between services

Should you write timing
code?

• Frameworks usually have metrics built-in

• Many frameworks have tracing built-in

• Lots of edge cases in this sort of code!

How to not see tracing
code?

• Buddy - another process intercepts yours

• Agent - code patches code

• Framework - code intercepts or configures code

Buddy tracing

web service processing

Use a service mesh to trace around your services

propagate
context headers

Agent tracing

We have ways of making code traced..

if ("spark/webserver/JettyHandler".equals(className)) {
 ClassPool cp = new ClassPool();
 cp.appendClassPath(new LoaderClassPath(loader));

 CtClass ct = cp.makeClass(new ByteArrayInputStream(classfileBuffer));

 CtMethod ctMethod = ct.getDeclaredMethod("doHandle");
 ctMethod.insertBefore("{ $4.setHeader(\”TraceId\", MagicTraceId.get()); }");

 return ct.toBytecode();
}

Framework Tracing

Framework code configures libraries

@Configuration
@AutoConfigureAfter(TraceAutoConfiguration.class)
@ConditionalOnClass(HystrixCommand.class)
@ConditionalOnBean(Tracer.class)
public class SleuthHystrixAutoConfiguration {

 @Bean
 SleuthHystrixConcurrencyStrategy sleuthHystrixConcurrencyStrategy(
 Tracer tracer, TraceKeys traceKeys) {

return new SleuthHystrixConcurrencyStrategy(tracer, traceKeys);
 }
}

How is timing data
shipped?

• Log - pull raw events into a parsing pipeline

• Metric - report duration buckets near-real time

• Trace - report spans near-real time

Parsing latency from events

Identify the pattern and parse into indexable fields

input {
 file {
 path => "/var/log/http.log"
 }
}

filter {
 grok {
 match => { "message" => "%{IP:client} %{WORD:method} %
{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}" }
 }
}

Bucketing duration
define boundaries up front…

boundaries[0] = 1; // 0 to < 1ms
boundaries[1] = 1000; // 1ms to < 1s
boundaries[2] = 50000; // 1s to < 50s

add values by incrementing count in a bucket
for (int i = 0; i < boundaries.length; i++) {
 if (duration < boundaries[i]) {
 bucket[i]++;
 return;
 }
}
bucket[boundaries.length]++; // overflow!

Shipping spans

Spans represent operations and are structured

 !""""""""""""""""""""""""""""""""#
$ ""% structure and report span &""""▶
 $ $
 ${ $
 $ "traceId": "aa", $
 $ "id": "6b", $
 $ "name": "get", $
 $ "timestamp": 1483945573944000,$
 $ "duration": 95491, $
 $ "annotations": [$
 $--snip-- $
 '""""""""""""""""""""""""""""""""(

How timing data grows

• Log - grows with traffic and verbosity

• Metric - fixed wrt traffic

• Trace - grows with traffic

Means to reduce volume

• Log - don’t log irrelevant data, filtering

• Metric - read-your-writes, coarser grain

• Trace - sampling, but needs to be consistent

Each have different retention, too!

Stitching all 3 together
Trace ID

Pod

Service Name

Metrics

LoggingTracing

Correlating Metrics and
Tracing Data

https://medium.com/observability/want-to-debug-
latency-7aa48ecbe8f7

Leverage strengths while
understanding weaknesses

• Log - monoliths, black boxes, exceptional cases

• Metric - identify patterns and/or alert

• Trace - distributed services “why is this slow”

Was this helpful?
If so, thank folks who helped with this!

@adrianfcole

@munroenic

@basvanbeek @bogdandrutu @jeanneretph

If not, blame me,

@peterbourgon

@felix_b

@abhik5ingh

https://peter.bourgon.org/blog/

@coda @jon_k_schneider

