
NATS
A nervous system

for modern
distributed systems

Derek Collison
@derekcollison

https://github.com/derekcollison
derek@apcera.com

derek.collison@gmail.com

http://www.apple.com
mailto:derek@apcera.com?subject=
mailto:derek.collison@gmail.com

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Why Even
Listen to

Me?

Derek Collison
Google 6yrs

TIBCO > 10yrs

Architected TIBCO Rendezvous and EMS
Architected the OpenPaaS CloudFoundry

Building Messaging Systems
and Solutions > 20yrs

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Why
Messaging?

Background
•MicroServices Architectures

•Event-Driven Architectures

•HTTP as an interface only goes so far

•1:N / 1:1 of N Patterns

•Cascading Request/Reply

•Subject/Topic based routing

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

a brief
Network
Recap

Networks
•IP: TCP and UDP

•Streaming vs limited packet size and
unreliability

•Effective 1:N -> UDP Broadcast /
Multicast

•Late 90s TCP becomes only fast-path
option

Networks

•Multicast has too much admin, failed

•Multicast trunked or disallowed

•UDP BC TOR trunked in most Cloud
Platforms

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Messaging

Basic Messaging Patterns

✓Publish-Subscribe
✓Queuing
✓Request-Reply

Messaging - Publish Subscribe
1 : N

Publisher

Subscriber

Subscriber

SubscriberSubject

Messaging - Queuing
1 : 1

Publisher Queue

Subscriber

Subscriber
Message #1

Subscriber

Messaging - Queuing
1 : 1

Publisher Queue

Subscriber

Subscriber
Message #2

Subscriber

Messaging - Queuing
1 : 1

Publisher Queue

Subscriber

Subscriber
Message #3

Subscriber

Messaging - Request Reply
1 : 1

Publisher

Reply Subscriber

Subscriber

SubscriberSubject

Messaging - Request Reply
1 : N

Reply

Publisher

Subscriber

Subscriber

SubscriberSubject

Messaging Use Cases

✓Addressing, discovery
✓Command and control - Control Plane
✓Load-balancing
✓N-way scalability
✓Location Transparency
✓Fault-Tolerance

Why
Pub-Sub?

Publish-Subscribe

✓A radio vs a phone call
✓E.g. Wallstreet quote distribution
✓programatic trading
✓fairness and delivery embargo
✓Don’t assume the Audience!

Queueing

Queueing

Publish or
Subscribe
operation?

Queueing

Publish is
Store and
Forward

Queueing

Subscribe is
distributed
queueing

Request-
Reply

Request-Reply

✓Don’t assume audience!
✓How many responders?
✓Always built on Publish-Subscribe

Enterprise
 Messaging Patterns

✓Persistence
✓Store & Forward
✓Distributed Transactions
✓Enhanced Delivery Models

Delivery

Delivery Models

✓At Most Once

✓At Least Once

✓Exactly Once

Delivery Models

Exactly
Once is very
HARD!

If you do it
Correctly

What if we
looked at the

problem
differently?

Should
it do

everything?

OR..

Should
it do

much less?

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

NATS
nats.io

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

the
Inspiration

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

What is
NATS?

What NATS is..
✓High-Performance
✓Always on and available
✓Extremely light-weight
✓Fire and Forget - At Most Once
✓Pub/Sub
✓Distributed Queues
✓Request/Reply

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

What is
NATS NOT?

What NATS is NOT..

✓Enterprise Messaging System
✓Persistence
✓Transactions
✓Enhanced Delivery Models
✓Queueing Product

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Disclaimer!
I built NATS for myself!

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

What’s
Unique?

What is Unique?
✓Clustered mode server
✓Cluster aware clients
✓Go, Node.js, Java, Scala, Python, Ruby

✓Auto-pruning of interest graph
✓Always Pub/Sub, NO Assumptions
✓Distributed queueing across clusters
✓Text-based protocol

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Performance

Performance
• Originally written to support CloudFoundry

• In use by CloudFoundry, HTC, Baidu, Apcera and
others

• Written first in Ruby -> 150k msgs/sec

• Rewritten at Apcera in Go (Client and Server)

• First pass -> 500k msgs/sec

• Current Performance -> 5-6m msgs/sec

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Performance 4k payloads
Courtesy - http://www.bravenewgeek.com/dissecting-message-queues/

http://www.bravenewgeek.com/dissecting-message-queues/

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Demo

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

More Info
slideshare.net/derekcollison/gophercon-2014

http://www.slideshare.net/derekcollison/gophercon-2014

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Text-Based?

Text-Based Protocol

✓Easy to get started with new clients
✓Does not affect performance
✓Can telnet directly to server

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Demo
telnet demo.nats.io 4222

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Monitoring

Monitoring

✓HTTP based monitoring
✓Modeled off of /varz in Google
✓Simple JSON payloads

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Demo
curl demo.nats.io:8222/varz

 curl demo.nats.io:8222/connz

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Clients

Clients

✓Go
✓Node.js
✓Java/Scala
✓Ruby
✓Python

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Clustered

Clustering

Client
Connection

GNATSD

GNATSD

GNATSD

Clustering

Client
Connection

GNATSD

GNATSD

GNATSD

Clustering

Client
Connection

GNATSD

GNATSD

GNATSD

X

Clustering

Client
Connection

GNATSD

GNATSD

GNATSD

X

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Auto-Pruning

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Big DEAL!
(to me)

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Why?

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

1:1 of
large N
(think Google)

Auto-Pruning

✓Able to express limited interest a priori
✓Systems uses circuit breakers
✓1:1 Requests to large N is very efficient!
✓Easily accessible in protocols
✓All clients support in Request/Reply

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Summary

Summary

✓Modeled to be always-on dial-tone
✓Always available - NATS protects itself
✓High-Performance server
✓Clustered Servers / Cluster aware Clients
✓Clients in many languages, contribute!

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Futures

Futures

✓NGINX C++ client to OSS
✓Performance gains in server and clients
✓C/C++, LUA clients
✓Monitoring dashboards
✓Auto-configuration service

Background

• Good Performance is good

•Predictably Good Performance is king!

•Measure everything (can’t fix what you don’t know)

•Understand your data

•Understand your user experience

• Don’t be a failure of your own success

Thanks!

Resources
https://nats.io

https://registry.hub.docker.com/u/apcera/gnatsd/
https://github.com/apcera/gnatsd

http://www.slideshare.net/derekcollison/
gophercon-2014

https://nats.io
https://registry.hub.docker.com/u/apcera/gnatsd/
https://github.com/apcera/gnatsd
https://github.com/apcera/gnatsd

Questions?

