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No-copy data access across silos 

agnostic to compute engine

Foundation of a heterogeneous data 

platform across geos

≈

Multi-Cloud Ready Analytics & AI Platform
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Stateful Distributed 
Coordination Services



Alluxio
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Key features

● Alluxio Caching provides cost saving, faster access
● Long-living cache scales independently of ephemeral compute resources
● Multiple interface support allow chaining of data pipeline across different compute engines / 

frameworks
● Unified namespace, physical data migration without needing to change application code
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Alluxio Architecture
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● UFS (Under File System)
○ E.g. Amazon S3, HDFS, etc
○ Object stores



Fault tolerance

- Workers can be replicated, act as a cache for the various UFS
- Many UFS have high availability, fault tolerance guarantees
- Master becomes single point of failure
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Journal details
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- Total order log of state changes
- Can recover state by replaying the 

operations
- Snapshots to efficiently store state

- Faster recovery
- Smaller size



Basic fault tolerance

- Create a fault tolerant journal
- If the master crashes

- Start a new master
- Replay the journal
- Start serving clients

- Detecting a failure, starting a new node, and replaying the journal takes time
- The system will be unavailable during this time
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Basic high availability

- Run multiple masters
- A primary master will serve requests
- Secondary master(s) will replicate the state of the primary master, and take 

over in case of failure
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Basic highly available/ fault tolerant architecture
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Problems to solve

- Ensure a single primary master running at all times
- Journal needs to be

- Fault tolerant
- Masters must agree on a single valid order of journal entries

- Consensus
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Implementation 1:
Zookeeper + UFS Journal



Ensure a single primary master running at a time 

- Leader election using Zookeeper
- Apache Zookeeper an open-source server which enables highly reliable 

distributed coordination
- Provides a file-system (hierarchical namespace) like abstraction built on top of an Atomic 

Broadcast (consensus) protocol
- Run on a cluster of nodes to provide fault tolerance/high availability
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Apache Zookeeper Curator leader election recipe

- Each master subscribes to the leader election recipe
- The recipe will elect one of the nodes leader
- If the leader fails or is unable to be reached due to network issues, the recipe 

will elect a new leader
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UFS Journal

- Write journal entries to the UFS
- Use the availability / fault tolerance guarantees of the UFS
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Does leader election solve all our problems?

- Not quite
- The Zookeeper recipe will do its best to ensure only a single node is chosen 

leader at a time, but due to asynchrony in the system two nodes may believe 
they are leader at the same time

- Multiple nodes may be trying to write to the journal concurrently
- Note leader election is sufficient to provide consensus, but is not a consensus protocol itself
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Defer to the UFS

- Can use the consistency guarantees of the UFS to ensure only a single writer 
to the journal
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- Alluxio Primary/ 
secondary master state 
transition



Ensure a single journal writer to the UFS

- Use a mutual exclusion protocol based on log file names
- Rename is atomic on HDFS

- (1, 12) (13, 20) (21, 300) (301, MAX_INT)
- New primary master must ensure current log file is “complete” before writing 

to a new log
- (1, 12) (13, 20) (21, 300) (301, 327)

- Create a new log
- (1, 12) (13, 20) (21, 300) (301, 327) (328, MAX_INT)
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Zookeeper + UFS architecture
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Issues

- Relies on multiple systems
- Each having their own fault tolerance/availability models
- More complicated

- Different UFS have different consistency models and performance
- May not be efficient for appending log entries 
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Implementation 2:
Raft Journal



The journal as a (deterministic) state machine

- Input: command
- Append

- State transition (deterministic):
- Add the journal entry to the log
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Raft - replicated state machine

- Clients interact with the state 
machine as if it was a single 
instance (linearizability)

- Clients send commands to the 
state machine and receive 
responses

- But the state machine is fault 
tolerant and has high 
availability

- Apache Ratis (java 
implementation of Raft)
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https://ratis.apache.org


Forget the Journal as a Log
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Inode ID Inode 
metadata

Worker location

0 … …

1 … …

Key-value store state machine commands:
- Write(key, value)
- Remove(key)
- Read(key) -> value



The Alluxio metadata as a replicated state machine

- Raft simplifies the task of 
implementing the journal.

- It handles snapshotting and recovery
- The journal just becomes a 

key-value store keeping track of the 
file-system meta-data

- Raft is colocated with the Alluxio 
masters
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RocksDB as the key-value store

- Log-structured merge tree
- Efficient inserts

- Key-value store
- Inode tree as a key-value map

- Alluxio provides an additional in-memory cache for fast reads
- Efficient snapshots
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Alluxio + Raft architecture
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Advantages

- Simplicity
- No external systems (raft colocated with masters)
- Journal as a key-value store (higher level abstraction)
- No longer relying on UFS rename semantics

- Performance
- Journal operations stored locally on masters
- RocksDB as an efficient key-value store
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Other systems

- Kubernetes - etcd - key/value store run on Raft
- Kafka - coordinator running Zookeeper -> Now on Raft
- FoundationDb - coordinators running Paxos

- Generally a paxos based replicated state machine of a simple data store with 
some custom application logic running over this
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Questions?



Twitter.com/alluxio

Linkedin.com/alluxio

Website
www.alluxio.io

Slack
https://alluxio.io/slack

@

Social Media

Github
https://github.com/Alluxio


