
Moving from Zookeeper
to Raft

ALLUXIO 1

David Zhu, ChanChan Mao @Alluxio

Tech Lead Manager,
Alluxio PMC

Community Evangelist

David Zhu ChanChan Mao

Analytics & AI
in the Hybrid & Multi-Cloud Era

Available:

Open Source Started From UC Berkeley AMPLab in 2014

Join the
conversation on

Slack
alluxio.io/slack

1,200+ contributors
& growing

10,000+ Slack
Community Members

Top 10 Most Critical Java
Based Open Source Project

GitHub’s Top 100 Most
Valuable Repositories

Out of 96 Million

INTERNET

PUBLIC CLOUD PROVIDERS

GENERAL

E-COMMERCE

OTHERSTECHNOLOGY FINANCIAL SERVICES

TELCO & MEDIA

LEARN MORE

Companies Using Alluxio

https://www.alluxio.io/powered-by-alluxio/

Inefficient Manual Copy Across Data Centers, Regions, Clouds

v

REGION A

v

REGION B

REGION A REGION B

PRIVATE DATA
CENTERS

Amazon
EMR

Cloud
Dataproc

Kubernetes
Engine

Compute
Engine

Hive

DATACENTER 2DATACENTER 1

ERROR PRONE AND
NETWORK INTENSIVE

DATA COPIES

No-copy data access across silos

agnostic to compute engine

Foundation of a heterogeneous data

platform across geos

≈

Multi-Cloud Ready Analytics & AI Platform

v

REGION A

v

REGION B

REGION A REGION B

GKE

DATACENTER 2DATACENTER 1

HMS

7

Solution

ALLUXIO 8

Stateful Distributed
Coordination Services

Alluxio

9

Key features

● Alluxio Caching provides cost saving, faster access
● Long-living cache scales independently of ephemeral compute resources
● Multiple interface support allow chaining of data pipeline across different compute engines /

frameworks
● Unified namespace, physical data migration without needing to change application code

10

Alluxio Architecture

11

● UFS (Under File System)
○ E.g. Amazon S3, HDFS, etc
○ Object stores

Fault tolerance

- Workers can be replicated, act as a cache for the various UFS
- Many UFS have high availability, fault tolerance guarantees
- Master becomes single point of failure

12

Journal details

13

- Total order log of state changes
- Can recover state by replaying the

operations
- Snapshots to efficiently store state

- Faster recovery
- Smaller size

Basic fault tolerance

- Create a fault tolerant journal
- If the master crashes

- Start a new master
- Replay the journal
- Start serving clients

- Detecting a failure, starting a new node, and replaying the journal takes time
- The system will be unavailable during this time

14

Basic high availability

- Run multiple masters
- A primary master will serve requests
- Secondary master(s) will replicate the state of the primary master, and take

over in case of failure

15

Basic highly available/ fault tolerant architecture

16

Problems to solve

- Ensure a single primary master running at all times
- Journal needs to be

- Fault tolerant
- Masters must agree on a single valid order of journal entries

- Consensus

17

ALLUXIO 18

Implementation 1:
Zookeeper + UFS Journal

Ensure a single primary master running at a time

- Leader election using Zookeeper
- Apache Zookeeper an open-source server which enables highly reliable

distributed coordination
- Provides a file-system (hierarchical namespace) like abstraction built on top of an Atomic

Broadcast (consensus) protocol
- Run on a cluster of nodes to provide fault tolerance/high availability

19

Apache Zookeeper Curator leader election recipe

- Each master subscribes to the leader election recipe
- The recipe will elect one of the nodes leader
- If the leader fails or is unable to be reached due to network issues, the recipe

will elect a new leader

20

UFS Journal

- Write journal entries to the UFS
- Use the availability / fault tolerance guarantees of the UFS

21

Does leader election solve all our problems?

- Not quite
- The Zookeeper recipe will do its best to ensure only a single node is chosen

leader at a time, but due to asynchrony in the system two nodes may believe
they are leader at the same time

- Multiple nodes may be trying to write to the journal concurrently
- Note leader election is sufficient to provide consensus, but is not a consensus protocol itself

22

Defer to the UFS

- Can use the consistency guarantees of the UFS to ensure only a single writer
to the journal

23

- Alluxio Primary/
secondary master state
transition

Ensure a single journal writer to the UFS

- Use a mutual exclusion protocol based on log file names
- Rename is atomic on HDFS

- (1, 12) (13, 20) (21, 300) (301, MAX_INT)
- New primary master must ensure current log file is “complete” before writing

to a new log
- (1, 12) (13, 20) (21, 300) (301, 327)

- Create a new log
- (1, 12) (13, 20) (21, 300) (301, 327) (328, MAX_INT)

24

Zookeeper + UFS architecture

25

Issues

- Relies on multiple systems
- Each having their own fault tolerance/availability models
- More complicated

- Different UFS have different consistency models and performance
- May not be efficient for appending log entries

26

ALLUXIO 27

Implementation 2:
Raft Journal

The journal as a (deterministic) state machine

- Input: command
- Append

- State transition (deterministic):
- Add the journal entry to the log

28

Raft - replicated state machine

- Clients interact with the state
machine as if it was a single
instance (linearizability)

- Clients send commands to the
state machine and receive
responses

- But the state machine is fault
tolerant and has high
availability

- Apache Ratis (java
implementation of Raft)

29

https://ratis.apache.org

Forget the Journal as a Log

30

Inode ID Inode
metadata

Worker location

0 … …

1 … …

Key-value store state machine commands:
- Write(key, value)
- Remove(key)
- Read(key) -> value

The Alluxio metadata as a replicated state machine

- Raft simplifies the task of
implementing the journal.

- It handles snapshotting and recovery
- The journal just becomes a

key-value store keeping track of the
file-system meta-data

- Raft is colocated with the Alluxio
masters

31

RocksDB as the key-value store

- Log-structured merge tree
- Efficient inserts

- Key-value store
- Inode tree as a key-value map

- Alluxio provides an additional in-memory cache for fast reads
- Efficient snapshots

32

Alluxio + Raft architecture

33

Advantages

- Simplicity
- No external systems (raft colocated with masters)
- Journal as a key-value store (higher level abstraction)
- No longer relying on UFS rename semantics

- Performance
- Journal operations stored locally on masters
- RocksDB as an efficient key-value store

34

Other systems

- Kubernetes - etcd - key/value store run on Raft
- Kafka - coordinator running Zookeeper -> Now on Raft
- FoundationDb - coordinators running Paxos

- Generally a paxos based replicated state machine of a simple data store with
some custom application logic running over this

35

ALLUXIO 36

Questions?

Twitter.com/alluxio

Linkedin.com/alluxio

Website
www.alluxio.io

Slack
https://alluxio.io/slack

@

Social Media

Github
https://github.com/Alluxio

