
LESSONS LEARNED MIGRATING AN
EXISTING PRODUCT TO A MULTI TENANT

CLOUD NATIVE ENVIRONMENT

Carlos Sanchez

 / / csanchez.org @csanchez @csanchez@fosstodon.org

http://adobe.com/
http://adobe.com/
http://csanchez.org/
http://twitter.com/csanchez
https://fosstodon.org/@csanchez

Principal Scientist

Long time OSS contributor at Jenkins, Apache Maven,
Puppet,…

Author of Jenkins Kubernetes plugin

Adobe Experience Manager Cloud Service

https://www.adobe.com/marketing/experience-manager/cloud-service.html

ADOBE EXPERIENCE
MANAGER

An existing distributed Java OSGi application

Using OSS components from Apache So�ware
Foundation

A huge market of extension developers

AEM ON
KUBERNETES

Running on Azure

45+ clusters and growing

Multiple regions: US, Europe, Australia, Singapore,
Japan, India, more coming

Adobe has a dedicated team managing clusters for
multiple products

17k+ environments

100k+ Deployments

6k+ namespaces

AEM ENVIRONMENTS
Customers can have multiple AEM environments
that they can self-serve
Each customer: 3+ Kubernetes namespaces
Each environment is a micro-monolith ™

Using namespaces to provide a scope

network isolation
quotas
permissions

SERVICES
Multiple teams building services

Different requirements, different languages

You build it you run it

Using APIs or Kubernetes operator patterns

ENVIRONMENTS
Using init containers and (many) sidecars to apply

division of concerns

SIDECARS

Service warmup
Storage initialization
httpd fronting the Java app
Exporting metrics
fluent-bit to send logs
Java threaddump collection
Envoy proxying
Autoupdater

SERVICE WARMUP
Ensure that the service is ready to serve traffic

Probes the most requested paths for lazy caching

Without requiring expensive starts

FLUENT-BIT TO SEND LOGS
Using a shared volume to send logs to a central

location

Configured independently from the application

ENVOY PROXYING
Using Envoy for traffic tunneling and routing

Enables dedicated ips per tenant and VPN connectivity

AUTOUPDATER
Runs on startup and updates any configuration

needed

Allows patching the whole cluster fleet live

OPERATORS

AEM ENVIRONMENT OPERATOR
Overarching operator that manages lifecycle of

environments

AEM ENVIRONMENT OPERATOR
An operator to rule them all

Launches jobs pre/post environment creation

Reconciles with other internal operators

FLUXCD HELM OPERATOR
https://fluxcd.io/

https://fluxcd.io/

FLUXCD HELM OPERATOR
Allows managing Helm charts using declarative state

vs imperative commands

Integrated with our operators to manage the lifecycle
of the Helm releases

and to gather state from the Helm operations

ARGOCD

ARGOCD

Applies GitOps state into the cluster

Widely used at Adobe

Includes workflows, events, ...

https://argoproj.github.io

https://argoproj.github.io/

ARGO ROLLOUTS
https://argoproj.github.io/rollouts/

https://argoproj.github.io/rollouts/

ARGO ROLLOUTS
Provides advanced deployment strategies

Canary, Blue/Green, A/B testing, etc.

Automated rollbacks

SCALING AND
RESOURCE

OPTIMIZATION

Each customer environment (17k+) is a micro-
monolith ™

Multiple teams building services

Need ways to scale that are orthogonal to the dev
teams

Kubernetes workloads can define resource requests
and limits:

Requests:

how many resources are guaranteed

Limits:

how many resources can be consumed

And are applied to

CPU

Memory

Ephemeral storage

Memory: limit enforced, results in Kernel OOM killed

Ephemeral storage: limit enforced, results in pod
eviction

CPU REQUESTS IN KUBERNETES
It is used for scheduling and then a relative weight

It is not the number of CPUs that can be used

1 CPU means it can consume one CPU cycle per CPU
period

Two containers with 0.1 cpu requests each can use
50% of the CPU time of the node

CPU LIMITS IN KUBERNETES
This translates to cgroups quota and period.

Period is by default 100ms

The limit is the number of CPU cycles that can be used
in that period

A�er they are used the container is throttled

+----------+ +-----------------------------+ +-----------
| Core 1 | | Thread 1 | | Thread 1
+----------+ +-----------------------------+ +-----------
+----------+
| Core 2 |
+----------+
+----------+
| Core 3 |
+----------+
+----------+
| Core 4 |
+----------+
 <-----------------------------> <-----------
 Period 100 ms

CPU LIMITS IN KUBERNETES
This is challenging for Java and multiple threads

For 1000m in Kubernetes and 4 threads

you can consume all the CPU time in 25ms and be
throttled for 75 ms

+----------+ +-----------------------------+ +-----------
| Core 1 | | Thread 1 ~~~~~~~~~~~~~~~~~~~| | Thread 1
+----------+ +-----------------------------+ +-----------
+----------+ +-----------------------------+ +-----------
| Core 2 | | Thread 2 ~~~~~~~~~~~~~~~~~~~| | Thread 2
+----------+ +-----------------------------+ +-----------
+----------+ +-----------------------------+ +-----------
| Core 3 | | Thread 3 ~~~~~~~~~~~~~~~~~~~| | Thread 3
+----------+ +-----------------------------+ +-----------
+----------+ +-----------------------------+ +-----------
| Core 4 | | Thread 4 ~~~~~~~~~~~~~~~~~~~| | Thread 4
+----------+ +-----------------------------+ +-----------
 <-----------------------------> <-----------
 Period 100 ms
 <------------------>
 Throttling

ARM ARCHITECTURE
15-25% cost savings for the same performance

Easy switch for containerized Java

JAVA AND
KUBERNETES

QUIZZ
Assume:

Java 11+ and latest releases
4GB memory available
2+ CPUs available

WHAT IS THE DEFAULT JVM HEAP SIZE?
1. 75% of container memory
2. 75% of host memory
3. 25% of container memory
4. 25% of host memory
5. 127MB

WHAT IS THE DEFAULT JVM HEAP SIZE?
1. 75% of container memory (< 256 MB)
2. 75% of host memory
3. 25% of container memory (> 512 MB)
4. 25% of host memory
5. 127MB (256 MB to 512 MB)

JDKs >=8u191 and >=11 will detect the available
memory in the container, not the host

Using the container memory limits, so there is no
guarantee that physical memory is available

Do not trust JVM ergonomics

Configure memory with

-XX:InitialRAMPercentage
-XX:MaxRAMPercentage
-XX:MinRAMPercentage (allows setting the
maximum heap size for a JVM running with less
than 200MB)

Typically can use up to 75% of container memory

Unless there is a lot of off-heap memory used
(ElasticSearch, Spark,...)

JVM takes all the memory on startup and manages it

JVM memory use is hidden from Kubernetes, which
sees all of it as used

Set request and limits to the same value

WHAT IS THE DEFAULT JVM GARBAGE
COLLECTOR?
1. SerialGC
2. ParallelGC
3. G1GC
4. ZGC
5. ShenandoahGC

WHAT IS THE DEFAULT JVM GARBAGE
COLLECTOR?

1. SerialGC <2 processors & < 1792MB available
2. ParallelGC Java 8
3. G1GC Java >=11
4. ZGC
5. ShenandoahGC

Poorly tuned GC will cause pauses and other issues

Do not trust JVM ergonomics

Configure GC with

-XX:+UseSerialGC
-XX:+UseParallelGC
-XX:+UseG1GC
-XX:+UseZGC
-XX:+UseShenandoahGC

HOW MANY CPUS WILL THE JVM BE ABLE
TO USE?

1. Same as the k8s container cpu requests
2. Same as the k8s container cpu limits
3. As many as the OS allows

HOW MANY CPUS WILL THE JVM BE ABLE
TO USE?

1. Same as the k8s container cpu requests
2. Same as the k8s container cpu limits <17.0.5 /

<11.0.17 / <8u351
3. As many as the OS allows Java 19+ / 17.0.5+ /

11.0.17+ / 8u351+

Before Java 19/17.0.5/11.0.17/8u351

0 ... 1023 = 1 CPU
1024 = (no limit)
2048 = 2 CPUs
4096 = 4 CPUs

Kubernetes sets cpu.shares from the CPU requests

JDK-8281181 Do not use CPU Shares to compute active
processor count

the JDK interprets cpu.shares as an
absolute number that limits how many

CPUs the current process can use

https://bugs.openjdk.org/browse/JDK-8281181
https://bugs.openjdk.org/browse/JDK-8281181

Do not trust JVM ergonomics

Configure cpus with

-XX:ActiveProcessorCount

IN A 32 CPU HOST WITH 2 JVMS WITH
SAME REQUESTS, WHAT IS THE MAX CPU

THAT EACH CAN USE?
limit=8 limit=16 no limit

one 100%

both 100%

IN A 32 CPU HOST WITH 2 JVMS WITH
SAME REQUESTS, WHAT IS THE MAX CPU

THAT EACH CAN USE?
limit=8 limit=16 no limit

one 100% 8

both 100% 8

IN A 32 CPU HOST WITH 2 JVMS WITH
SAME REQUESTS, WHAT IS THE MAX CPU

THAT EACH CAN USE?
limit=8 limit=16 no limit

one 100% 8 16

both 100% 8 16

IN A 32 CPU HOST WITH 2 JVMS WITH
SAME REQUESTS, WHAT IS THE MAX CPU

THAT EACH CAN USE?
limit=8 limit=16 no limit

one 100% 8 16 32

both 100% 8 16 16

KUBERNETES
AUTOSCALING

KUBERNETES AUTOSCALING
Cluster Autoscaler
Horizontal Pod Autoscaler
Vertical Pod Autoscaler

KUBERNETES
CLUSTER

AUTOSCALER
Automatically increase and reduce the cluster size

Based on CPU/memory requests

KUBERNETES CLUSTER
AUTOSCALER

Max nodes managed at the cluster level

Savings: 30-50%

VERTICAL POD
AUTOSCALER

Increasing/decreasing the resources for each pod

Requires restart of pods (automatic or on next start)

(next versions of Kubernetes will avoid it)

VPA
Only used in AEM dev environments to scale down if

unused

Savings: 5-15%

HORIZONTAL POD
AUTOSCALER
Creating more pods when needed

HPA
AEM scales on CPU and http requests per minute

(rpm) metrics

⚠ Do not use same metrics as VPA

CPU autoscaling is problematic

Periodic tasks can spike the CPU, more pods do not
help

Spikes on startup can trigger a cascading effect

Savings: 50-75%

Easy to start in k8s, then optimize

Use patterns to decompose application: sidecars, init
containers, new services,...

Resource optimization: tuning JVM CPU, memory, GC

csanchez.org

csanchez

carlossg

http://csanchez.org/
http://twitter.com/csanchez
https://github.com/carlossg
http://adobe.com/
http://adobe.com/

