KVM, OpenStack, and the Open Cloud

Adam Jollans, IBM
Southern California Linux Expo – February 2015
Agenda

• A Brief History of Virtualization
• KVM Architecture
• OpenStack Architecture
• KVM and OpenStack
• Case Studies
 – NTT Com
 – Intel IT
 – CERN
• Additional Resources
A Brief History of Virtualization

- 1960s: Virtualization on Unix systems
- 1980s: Virtualization on mainframes
- 1990s: VMware hypervisor for x86
- 2000s: Xen hypervisor for x86
- 2010s: KVM hypervisor
- 2014: LXC / Docker

21Feb15

Open Virtualization Alliance
Conceptual Framework

User Interface

Management Tools

Applications

Storage

Compute

Networking

21Feb15
Introduction to KVM

User Interface
- oVirt
- Kimchi
- libvirt

Management Tools
- KVM

Applications

Compute

Storage

Networking
KVM Architecture

Open source hypervisor based on Linux

KVM
• Kernel module that turns Linux into a Virtual Machine Monitor
• Merged into the Linux kernel

QEMU
• Emulator used for I/O device virtualization

Processors supported
• x86 with virtualization extensions
 • Intel VT-x
 • AMD (AMD-V)
• POWER8
• IBM z Systems
• ARM64
KVM Performance

SPECvirt_sc2013

VMware (ESX 5.1), Intel Xeon E5 - 16 cores (HP)
KVM (RHEL 6.2), Intel Xeon E5 - 32 cores (HP)
KVM (RHEL 6.4), Intel Xeon E5 - 16 cores (IBM)
KVM (RHEL 6.4), Intel Xeon E5 - 24 cores (IBM)
KVM (RHEL 6.4), Intel Xeon E5 - 24 cores (IBM)
KVM (RHEL 6.5), Intel Xeon E5 - 60 cores (IBM)
KVM (RHEL 6.5), Intel Xeon E5 - 60 cores (IBM)
KVM (RHEL 6.5), Intel Xeon E7 - 120 cores (Lenovo)
KVM (RHEL 7), Intel Xeon E5 - 36 cores (HP)
KVM (Huawei FusionSphere), Intel Xeon E5 - 16 cores (HP)
KVM (Huawei FusionSphere), Intel Xeon E5 - 60 cores (Huawei)
PowerVM (IBM), IBM POWER8 - 24 cores (IBM)

Source: SPECvirt_2013 Published Results - http://www.spec.org/virt_sc2013/results/specvirt_sc2013_perf.html

21Feb15
Open Virtualization Alliance
KVM Security

SELinux
- Mandatory Access Control (MAC) integrated into Linux
- Provides “need to know” security between processes

sVirt
- Combines SELinux and KVM
- Delivers “need to know” security between virtual machines

Certifications
- EAL4+ certification for KVM in RHEL 6 and SLES 11 SP 2 on various x86 64-bit Intel and AMD64-based hardware from Dell, HP, IBM and SGI
KVM Management - libvirt

User Interface

- Library
 - Open Source project
 - Manages multiple hypervisors

- Command Line
 - Powerful
 - Complex to use

- Network Daemon
 - Enables remote management

Base for other management tools
- virt-manager, Kimchi, oVirt
- OpenStack

KVM
Xen
LXC
...

Compute
KVM Management - Kimchi

Kimchi
- Open Source project
- Manages KVM on x86, Power

User Interface
- Easy to use
- Access from HTML5 web browser

Servers managed
- Single digits
KVM Management - oVirt

- oVirt
 - Open Source project
 - Manages KVM on x86

- User Interface
 - Web portals
 - Command line, API

- oVirt Engine
 - Manages VMs
 - Configures storage, network

- oVirt Nodes
 - Run virtual machines

- Servers managed
 - Tens to hundreds

21Feb15
KVM Futures

• Heterogeneous processor support
 – ARM
 – POWER
 – System z
 – GPUs

• Network Function Virtualization

• Additional Performance Improvements
 – Minimizing locks
 – Multi-threaded device model

• Nested Virtualization
Building Open Clouds

- Security
- Resilience
- Performance
- Scalability – thousands of nodes
- Heterogeneity
- Interoperability
Introduction to OpenStack

OpenStack

User Interface
- Horizon
- Command Line

Management Tools
- Ceilometer
- Cinder
- Swift
- Glance
- Keystone
- Nova
- Neutron
- Horizon
- Glance
- Nova
- Neutron

Applications
- Heat
- Sahara
- Trove

OpenStack Components
- Choice of hypervisor
- Choice of storage
- Choice of network

Open Virtualization Alliance
OpenStack Design Principles

• Open
 – Open Development Model
 – Open Design Process
 – Open Community

• General Purpose
 – Balancing Compute, Storage, Network

• Massively Scalable

• Multi-site

• Resilient and recoverable
Nova – Compute Service

Manages VM lifecycle
- Starting and stopping VMs
- Scheduling and monitoring VMs

Key Components
- API
- Database
- Scheduler
- Compute node and plug-ins

Authentication
- Keystone

Access to VM images
- Glance
- Swift
OpenStack and Hypervisor Usage

Keystone – Authentication Service

Manages security
- Service for all other modules
- Authentication
- Authorization

Key components
- API
- Backends
 - Token
 - Catalog
 - Policy
 - Identity
Cinder – Block Storage Service

- Manages persistent block storage
 - Provides volumes to running instances
 - Pluggable driver architecture
 - High Availability

- Key components
 - API
 - Queue
 - Database
 - Scheduler
 - Storage plug-ins

- Authentication
 - Keystone

Horizon
Command Line
Keystone
Cinder
Choice of Block Storage
Storage
Neutron – Networking Service

(Manages networking connectivity)
- Provides volumes to running instances
- Pluggable driver architecture
- Support for range of networking technologies

Key components
- API
- Queue
- Database
- Scheduler
- Agent
- Networking plug-ins

Authentication
- Keystone
Glance – Image Service

Manages VM images
- Catalog of images
- Search and registration
- Fetch and delivery

Key components
- API
- Registry
- Database

Authentication
- Keystone

Storage of VM images
- Swift
- Local file system

VM Images
Storage
Keystone
Glance
Swift
Command Line
Horizon
Swift – Object Storage Service

Manages unstructured object storage
- Highly scalable
- Durable – three times replication
- Distributed

Key components
- Proxy / API
- Rings
 - Accounts
 - Containers
 - Objects
- Data stores

Authentication
- Keystone
Provisioning a VM

User Interface
- Horizon
- Command Line

Management Tools
- Cinder
- Swift
- Glance
- Nova
- Keystone

Applications
- Neutron

Storage
- Compute
- Networking

21Feb15
OpenStack Futures – Kilo

• Horizon
 – Updated user interface
• Glance
 – Additional artifacts beyond just images
• Ironic
 – Bare Metal Provisioning
• Zaqar
 – Messaging and Queuing System
KVM and OpenStack

• KVM excels at choice criteria for Hypervisor
 – Cost
 – Scale & Performance
 – Security
 – Interoperability

• Development Affinity
 – Both open source projects
 – KVM is default hypervisor for OpenStack development

• Deployment Affinity
 – KVM is best supported, easiest to deploy, with most full-featured driver
NTT Com’s OpenStack Deployment

• NTT Com
 – Leading global carrier headquartered in Japan
 – Early adopter of both KVM and OpenStack
 – Basing one of its public cloud offerings on OpenStack and KVM

• NTT involvement
 – Actively involved with the OpenStack and KVM communities
 – Continues to contribute to the development of both projects, with an emphasis on the cloud service provider use case

• Use of OpenStack
 – Flexible plug-in infrastructure used as a unified orchestrator of both computing and networking resources
 – Integrate software-defined-networking (SDN)-powered enterprise VPN service, allowing customers to create virtual datacenters that can span two or more physical ones
 – GUI portal for its cloud services using OpenStack native APIs, letting customers provision and manage virtual machines, networks, and storage without having to know the OpenStack APIs

Source: IDC white paper – “KVM – Open Source Virtualization for the Enterprise and OpenStack Clouds”
Intel IT & OpenStack/KVM

Deployment History

- OpenStack Essex
- ~1000 virtual instances for external services
- qemu-system-x86_64 1.0

- OpenStack Grizzly
- ~3500 instances for multiple services (~40:1, ~100 vCPU)
- qemu-system-x86_64 1.4.2

Source: Open Virtualization Alliance presentation by IBM and Intel at LinuxCon Europe 2014

21Feb15

Open Virtualization Alliance
Intel IT & OpenStack/KVM

KVM Benefits

<table>
<thead>
<tr>
<th>Performance</th>
<th>Stability</th>
</tr>
</thead>
</table>
| • 2012 Study on ‘standard’ cloud workloads (database)
 • Par or better vs. marketplace
 • HV realm is seemingly near-stable on straight performance | • Open Source, tight OpenStack and Linux kernel integration
 • Hypervisor efficiency
 • Drinking our own champagne - we’ve got a few KVM devs :-) |

KVM Lessons Learned

<table>
<thead>
<tr>
<th>Performance</th>
<th>Stability</th>
</tr>
</thead>
</table>
| • Check flags – lots of features/options
 • Windows guest updates
 • Keep your images current | • Oversubscribing & big multi-vCPU instances
 • Windows guest can be sensitive IO interruptions |

Source: Open Virtualization Alliance presentation by IBM and Intel at LinuxCon Europe 2014
CERN Private Cloud

• CERN
 – Fundamental research into particle physics
 – Large Hadron Collider seeking to find new particles
 – Massive need for scalable computing resource on demand

• CERN Private Cloud
 – Production since July 2013 with OpenStack using KVM, MySQL and RabbitMQ
 – Currently 3,200 hypervisors with 83,000 cores
 – Expected to reach over 100,000 cores by 2Q 2015

• Key Requirements
 – Scale
 – Technology and Developer ecosystem
 – Interaction with existing IT services

Source: CERN OpenStack public reference on www.openstack.org
Additional Resources

- Open Virtualization Alliance
 - https://openvirtualizationalliance.org
- IDC White Paper
 - “KVM – Open Source Virtualization for the Enterprise and Open Stack Clouds”
- New Linux Foundation Training Course
 - LFS540 – “Linux KVM Virtualization”
- OpenStack Foundation
 - http://www.openstack.org