

Diagnosing Performance Bottlenecks in Production Systems

by Julia Iacoviello

Performance Issue? What to do?

- **X** Restart system/services
- X Reapply thermal paste
- X Reseat components
- **X** Blow out the case with compressed air
- **X** Kill random processes
- **X** Percussive maintenance
- X Upgrade hardware

Julia Iacoviello Systems Engineer LINBIT

- Implements and supports Highly Available (HA) production environments
- High availability: Groups of servers (clusters) where one is configured to automatically switch (fail over) to a working node if there is an issue
- Many LINBIT clients have tight SLAs for service uptime

Are These Good Numbers?

???

top - 14	:22:38	Bup 4 d	ays,	, 54 min,	, 6 use	ers, lo	ad ave	erage: 0	.86, 0.65,	0.67
Tasks: 4	62 tot	tal, 1	rur	nning, 40	51 sleep	oing, d) stop	oped,	0 zombie	
%Cpu(s):	0.4	us, 1.	3 sy	/, 0.4 r	ni, 97.9) id, 0	.0 wa,	0.0 h	i, 0.0 si	, 0.
MiB Mem	: 640	024.7 to	tal,	767	.2 free,	39476	.7 use	ed, 237	80.8 buff/	cache
MiB Sw	19	952.0 to	tal,	1898	.2 free,	53	.8 use	ed. 221	41.6 avail	Mem
			чц.,	in ini					and the strength of	an a
TD	USER	PR	NI	VIRT	RES	SHR	5 %CF	PU %MEM	TIME+	COMMAND
280366	julia	20	0	3881384	2.4g	2.3g	55.	0 3.8	52:26.59	VBoxHeadless
324571	julia	20	0	3338132	1.1g	1.0g	3.	3 1.7	39:16.85	VBoxHeadless
192119	julia	20	0	1131.4g	263676	123100	2.	3 0.4	3:38.69	chrome
204131	julia	20	0	3575688	1.1g	1.	<mark>5</mark> 2.	3 1.7	52:31.33	VBoxHeadless
124239	julia	20	0	3938736	1.7g		51.	7 2.7	48:20.99	VBoxHeadless
205264	julia	20	0	3639692	2.1g	Øg 1	51.	7 3.3	24:46.57	VBoxHeadless
439911	julia	20	0	1133.4g	133668	1180	51.	7 0.2	0:00.41	chrome
195656	julia	20	0	3317652	1./	1.8g !	51.	3 2.9	46:47.50	VBoxHeadless
202935	julia	20	0	3645320	9590	912072	51.	3 1.5	27:00.41	VBoxHeadless
248563	julia	20	0	3873200	2.4g	2.3g	51.	3 3.8	21:37.27	VBoxHeadless
4046	julia	20	0	32.8g	514784	229032	51.	0 0.8	42:03.31	chrome
90600	julia	20	0	3873204	2.4g	2.3g	51.	0 3.8	32:16.93	VBoxHeadless
157996	julia	20	0	3873192	2.4g	2.3g	51.	0 3.8	32:23.11	VBoxHeadloss
216105	julia	20	0	3883436	2.4g	2.3g	51.	0 3.8	39:42.41	VD 55
322225	julia	20	0	3479444	291464	246648	51.	0 0.4	7.	aneadless
339865	julia	20	0	5092560	3.0g	2.9g	51.	0 4.8	.28	VBoxHeadless
371382	julia	20	0	5327464	3.0g	2.9g	51.	0 4.8	36:29.76	VBoxHeadless
403177	julia	20	0	4275812	1.9g	1.8g	51.	0 3.0	3:53.63	VBoxHeadless
397	root	-51	0	0	0	0	50.	7 0.0	53:50.96	irq/96-DLL0945:
2883	root	20	0	3751084	129896	82996	50.	7 0.2	71:51.12	Xorg
323388	julia	20	0	3331988	234648	189512	50.	7 0.4	15:48.16	VBoxHeadless
1884	root	20	0	276256	10944	9896	50.	3 0.0	11:15.47	thermald

???

Talk Outline

- Introduction (you are here)
- Basic Concepts & Methodologies

Overhead

- The impact that *gathering the data itself* has on the system
- Different methods have more or less

440036	julia	20	0	13480	4560	3464	R	0.3	0.0	0:02.95 top
440057	julia	20	0	2527284	167616	104808	S	U.J	0.5	0.00.24 speciacle
440222	root	20	0	0	0	0	Ι	0.3	0.0	0:01.49 kworker/12:1-mm_percpu_wq
1	root	20	0	167156	12776	8420	S	0.0	0.0	0:05.80 systemd
2	root	20	0	0	0	0	S	0.0	0.0	0:00.24 kthreadd
3	root	0	-20	0	0	0	Ι	0.0	0.0	0:00.00 rcu_gp
4	root	0	-20	0	0	0	Ι	0.0	0.0	0:00.00 rcu_par_gp
5	root	0	-20	0	0	0	Ι	0.0	0.0	0:00.00 slub_flushwq

Observability

- The ability to measure the system state based on what it is *already doing*
- Can also refer to static configuration of the system
- Preferred (in most cases) for systems already deployed to production

Micro-Benchmarking

- Metrics derived from a *simulated workload* applied to one component or one subset of system components
- Less overhead than Macro-Benchmarking

```
julia@julia-XPS-15-9510:/$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=120 time=7.25 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=120 time=7.00 ms
^C
--- 8.8.8.8 ping statistics ---
8 packets transmitted, 2 received, 75% packet loss, time 7098ms
rtt min/avg/max/mdev = 7.000/7.123/7.247/0.123 ms
```


Macro-Benchmarking

- Applying the application workload fully as it would flow through the data path
- Run explicitly as a test to observe system metrics while it is applied
 Image: Construction of the system metrics
 Construction of the sy

Workload Characterization

• Determining quantitative aspects of the production workload to better simulate and observe how it performs on the system

julia@julia-XPS-15-9510:~\$ dd if=/dev/zero of=/dev/null obs=bytes bs=512 count=1

Performance Tuning

- Changing aspects of the environment and configuration with the intent to improve performance
- Especially disruptive/risky for production systems, so prior diagnostics via other methods are critical

root@sar-1:/home/vagrant# ps -eo pid,ppid,ni,comm | grep backup.sh
1223286 1217870 -2 backup.sh
root@sar-1:/home/vagrant# renice -n 5 1223286
1223286 (process ID) old priority -2, new priority 5
root@sar-1:/home/vagrant#

The USE Method

- Developed by Brendan Gregg
- Focus on *Utilization, Saturation,* and *Errors* of system resources to quickly diagnose performance issues
- Learn more at www.brendangregg.com/usemethod.html
- Or his book, Systems Performance, 2nd ed.

Functional Block Diagram

The USE Method, Cont'd

- Utilization: The percentage of time the resource is doing work
- Saturation: The degree to which a resource has more work than it can process
- Errors: An discrete incident of a system not working as intended. In this case, refers to logged/loggable errors.

Considerations for Disk I/O Benchmarking

- Random vs sequential
- Ratio of reads/writes
- Size of individual writes performed
- Working Set Size: How much memory is needed by the application to perform the work
- Flash SSDs vs rotational HDDs
- RAID configuration (striped, parity?)

Disk Performance Tools & Metrics

- iostat used to measure disk I/O (or determine if disks are performing I/O at all). Use with the -x flag
- iowait a measure of the time CPUs are waiting for disk I/O to complete. Can be misleading!
- smartctl can be used to report health metrics from disks, if supported by the disks used

Where to go from here?

- perf: The Linux CPU profiler. Lightweight, powerful
- eBPF: Extended Berkeley Packet Filter. Kernel technology (available since 4.4) to run programs in kernel space and has numerous use cases for observability, tracing and profiling

Thanks for listening!

Julia lacoviello julia@linbit.com

www.linbit.com