
flox.dev

Reproducible dev
environments w/Flox
Ross Turk

A few abstract thoughts about
software environments…

Software is built on top of a lot of stuff

ConfigurationFrameworksLibrariesTools

The code we write

Each project has its own annoying collection of stuff

Code Code Code

Your system Your friend’s system

Sharing these environments can be hard

Code Code

Public sources

Recreating the past is even harder

Code Code Code Code

Okay, now a few quick thoughts
about package management

Most package managers operate at the system level

/bin

/usr/bin

/usr/include

/usr/lib

…

which means that stuff is either “installed” or it’s not,
and uninstalling means finding and removing stuff.

/nix/store/ /bin

/nix/store/ /etc

Nix places packages into a special store

/nix/store/ /bin

/nix/store/ /etc

/nix/store/ /include

/nix/store/ /lib

/nix/store/ /lib

/nix/store/ /include

And weaves them together dynamically

/nix/store/
Code

Code

using a mad clever web of symlinks, hook scripts, and
environment variables.

Nix does more than just manage packages

...it also acts nothing like a traditional package manager
and it has a steep learning curve.

Builds software deterministically
using a declarative language

Allows for sophisticated overrides
and complex integrations

What is Flox?

Flox makes it easy to build virtual environments

Flox still behaves a lot like a package manager,
but adds a few new subcommands.

+flox init

 flox search
 flox install
 flox uninstall

+flox activate

+flox push
+flox pull

It’s term time
The basics: init, search, install, activate

What else can it do?

Three ways to
use Flox

environments

Manage alongside code
cd myproject
flox init
flox install nodejs
git add .flox

FloxHub remote activation
mkdir funtools
flox init
flox install lolcat charasay
flox push
ssh me@remote
flox activate -r [username]/funtools

Default environment
cd ~
flox init
flox install inetutils bat
echo eval '"$(flox activate)"' >> .zshrc

What’s in the manifest?

Packages

Environment variables

Shell hooks

Supported architectures

What’s in the
manifest?

[install]
podman.pkg-path = "podman"
buildah.pkg-path = "buildah"
qemu = { systems = ["aarch64-darwin"], pkg-path = "qemu" }

[vars]
BUILDAH_CPPFLAGS="-DDEBUG"

[hook]
script = """
 if [[$(uname -m) == 'arm64']]; then
 podman machine start
 fi
"""

[options]
systems = [
 "x86_64-linux",
 "aarch64-darwin"
]

Term time again
Adding a hook to an environment to make it do stuff

Remotely activating an environment on FloxHub
Creating a new project environment

A word on isolation and layering

The desk metaphor

Last term time :(
A simple layering example

Flox does an amusing trick!

What’s next for Flox?

What’s next for Flox?

More robust public catalog:
historical versions & curation

Private catalogs

“Escape hatches” Nix devs can
use to build fancy environments

flox.dev

