
The Inspektor Gadget

Project

An eBPF systems inspection tool and framework

CNCF Sandbox Project

Goals

eBPF
You have a high-level understanding of eBPF and its superpowers

Inspektor Gadget
You learn about Inspektor Gadget and how it “supercharges” eBPF

Fun
You are engaged during this talk and enjoy learning about these items

Agenda 1. Introduction

2. What is eBPF?

3. What is Inspektor Gadget?

4. Why Inspektor Gadget?

5. How to leverage IG

6. What’s next?

Hello!

Maya Singh
Product Manager

@ Microsoft

Mauricio Vasquez Bernal Chris Kuehl

Disclaimer:

+Some features are behind an
experimental flag or in progress

+Others still in development
branches

+Will stabilize over the next few
releases/months

+Eager to have your feedback on
functionality and UX

Under Active
development!

What do you think of when you hear
“eBPF?”

Menti.com | 2209 6641

What is eBPF?

What is eBPF?

eBPF is in-kernel bytecode runtime used for tracing, security, networking etc…

eBPF Capabilities

+ Brings flexibility to the kernel

+ Low strain from a
performance perspective

+ Won’t crash your kernel

Examples of eBPF use cases

Tracing
eBPF can be used to measure CPU usage, memory allocation, and
similar metrics which can be used for performance troubleshooting

Security
eBPF can be used to enforce access control policies, you can
whitelist/blacklist specific system calls, network connection etc…

Networking
eBPF allows for packet filtering and modification within the Linux
kernel (Firewall rules)

eBPF traffic monitoring | Android Open Source Project
Keynote: eBPF - Everything You Need to Know in 5 Minutes - Thomas Graf, CTO, Isovalent (youtube.com)

https://source.android.com/docs/core/data/ebpf-traffic-monitor
https://www.youtube.com/watch?v=KhPrMW5Rbbc

eBPF Hooks
+ eBPF is event driven, when “hooks” are passed, eBPF programs are

executed

Source: Mauricio Vasquez Bernal & Chris Kuehl

Li
n

u
x

K
er

n
el

eBPF program

Network

eBPF program

Storage Hooks

eBPF Maps

+ Key/Value structures to share information between eBPF programs
and user space applications

Application

Li
n

u
x

K
er

n
el

bpf() syscall

eBPF program

eBPF program

eBPF program

eBPF Map

Application

Source: Mauricio Vasquez Bernal & Chris Kuehl

What is eBPF?

eBPF is in-kernel bytecode runtime used for tracing, security, networking etc…

eBPF Capabilities eBPF Challenges

+ Brings flexibility to the kernel

+ Low strain from a
performance perspective

+ Safe way to access the kernel

+ Steep learning curve

+ Requires deep level of low-
level systems
troubleshooting

+ Limited higher level context

eBPF overview

eBPF program

Kernel

eBPF map

Userspace

event

eBPF programs attach to

kernel primitives (hooks)

like sockets, syscalls,

Tracepoints, etc. and run

when an event occurs

Source: Mauricio Vasquez Bernal & Chris Kuehl

What is Inspektor Gadget?

What is Inspektor Gadget?

Tool
A set of tools (gadgets) that empower users to inspect Linux and Kubernetes systems
using eBPF programs in an accessible way

Framework
A method through which eBPF developers can easily build, package, deploy, and run
“gadgets”

Community
Bridging the gap between highly technical eBPF concepts and the everyday
developer who wants visibility into Linux and Kubernetes systems

eBPF with Inspektor Gadget

Gadget

Kernel

eBPF map

Userspace

event

eBPF programs attach to

kernel primitives like

sockets, syscalls,

Tracepoints, etc. end run

when an event occurs

• Enrichment
• Filtering
• Userspace processing
• Data export
• Sharing & distribution
• Many modes of use

Source: Mauricio Vasquez Bernal & Chris Kuehl

Event enrichment and filtering

+ Problem: events from eBPF give low-level data:
+ Kernel namespaces

+ cgroups

+ Solution: event enrichment adds high-level data:
+ Kubernetes pods, containers

+ Domain names or Kubernetes services from IP

+ Container information

+ Event filtering: showing a subset of events
+ From selected containers, Kubernetes pod, namespace, labels

+ Filtered in eBPF for performance, but abstracted for gadget authors

Source: Mauricio Vasquez Bernal & Chris Kuehl

Event enrichment and filtering

eBPF program

Event:

- Mount namespace

- Cgroup id

- Other data

IG

(userspace)

Kubernetes

API server

Container managers

& runtimes

Event:

- Kubernetes namespace, pod, container

- Systemd unit

- From IP address to Kubernetes Service

...othereBPF mapsEnrichment and filtering:

Abstracted from the eBPF code

Kernel Userspace

Source: Mauricio Vasquez Bernal & Chris Kuehl

Anatomy of a gadget

Gadget (OCI Image)

Metadata

(yaml file)

eBPF programs+maps

(ELF file)

Userspace module

(Wasm file)

• Information about
• The gadget
• Capabilities
• Output formatting
• Build information

• One or more eBPF programs

• Userspace modules for post-
processing of eBPF data.

• Can be in any language WASM
supports

* Also looking to include
• Documentation
• Source code
• Logo
• etc.

Source: Mauricio Vasquez Bernal & Chris Kuehl

Anatomy of a gadget

ig

OCI registry

Gadget (OCI Image)

Metadata

(yaml file)

eBPF programs+maps

(ELF file)

Userspace module

(Wasm file)

Linux host

Image push

Image pull

Source: Mauricio Vasquez Bernal & Chris Kuehl

“Official” Gadgets

+ Advise: Recommend system configurations based on collected information
+ seccomp-profile, network-policies

+ Audit: Audit a subsystem
+ seccomp

+ Profile: Profile different subsystems
+ block-io, cpu

+ Snapshot: Take a snapshot of a subsystem and print it
+ process, socket

+ Top: Gather, sort and periodically report events according to a given criteria
+ file, tcp

+ Trace: Trace and print system events
+ bind, dns, exec, mount, oomkill, tcp{drop, retrans}, open, few more…

Sample Gadgets

trace DNS snapshot processtop block io

Prints information
about DNS queries and
responses sent and
received by different
pods

Used to visualize
containers generating
the most block device
input/output

Gets a list of running
processes on the host

Which type of gadget seems the most
useful to you?

Menti.com | 2209 6641

Why Inspektor Gadget?

Background

+ Started in 2019

+ Wanted to bring eBPF and BCC tools to Kubernetes
+ …meaning it was Kubernetes only

+ Now supports…
+ Linux hosts with the ig cli tool

+ Kubernetes with the kubectl-gadget kubectl plugin

+ Discovered we had essentially built a framework

+ Has been transitioning from a collection of “built-in” gadgets to tool
for building, packaging and running gadgets packaged as OCI images

Why Inspektor Gadget?

+ eBPF is an extremely powerful tool for gathering system information

+ But eBPF is hard – technically and intuitively

+ Once you have data, it’s still not immediately useful
+ How does this kernel data relate to my system as I understand it?
+ Where do I send the data?

+ Lots of additional tooling needed for…
+ Managing eBPF programs
+ Mapping kernel data to higher-level resources (K8s, container runtimes, etc.)
+ Doing userspace processing
+ Exporting data / providing data via API

Some examples of IG use cases ☺

Source: Empowering Kubernetes Observability with eBPF on Amazon EKS | Containers
 CNCF On demand webinar: eBPF-based Kubernetes Security | CNCF

ARMO Amazon EKSMS Defender

ARMO and the
Opensource project
Kubescape use IG to
enhance detecting
vulnerabilities in
containers

Inspektor Gadget is
used in MS Defender for
Containers to collect
security events,
generate insights and
real-time threat
detection alerts.

Amazon EKS Users
leverage Inspektor
Gadget to inspect their
Kubernetes
environment with eBPF
tools

https://aws.amazon.com/blogs/containers/empowering-kubernetes-observability-with-ebpf-on-amazon-eks/
https://www.cncf.io/online-programs/cncf-on-demand-webinar-ebpf-based-kubernetes-security/

How you can leverage IG

Inspektor Gadget Modes of Operation

+ Linux host
+ Ig binary
+ Ig inside a container

+ Client-server setup
+ Ig runs as a service inside the host
+ We use a Client called gadgetctl to control the service (via API call)

+ Kubernetes
+ Ig is deployed via daemon set
+ Kubectl-gadget plugin used to control the daemon set

+ Go library API
+ Work in progress

Inspektor Gadget Data Export Options

Raw Data
We provide a json file of data that you can then do with what you please

Prometheus
We are working towards a more efficient exporting of metrics to
Prometheus

OpenTelemetry
Ultimately, we want to support logs, metrics, and traces through OTel

Demo – trace DNS and top TCP

Demo – trace DNS and top TCP

trace DNS output

top TCP output

What’s Next?

Looking ahead

+ Support declarative way to
run gadgets

+ Configuration file

+ Support of various export
options

+ Golang API full support of
image based gadgets

+ Gadgets in Artifacthub.io
+ Understand community

priorities
+ Proper documentation for all

this ;-)

Call to Action

Think about how eBPF could be used to enhance

the projects you’re working on and see if we have

a gadget that could help you!

Thank you

Web: inspektor-gadget.io

Slack: #inspektor-gadget on the Kubernetes Slack

Github: github.com/inspektor-gadget/inspektor-gadget

Hope to see you around SCaLE!

	Slide 1
	Slide 2: Goals
	Slide 3: Agenda
	Slide 4: Hello!
	Slide 5: Disclaimer:
	Slide 6: What do you think of when you hear “eBPF?”
	Slide 7: What is eBPF?
	Slide 8: What is eBPF?
	Slide 9: Examples of eBPF use cases
	Slide 10: eBPF Hooks
	Slide 11: eBPF Maps
	Slide 12: What is eBPF?
	Slide 13: eBPF overview
	Slide 14: What is Inspektor Gadget?
	Slide 15: What is Inspektor Gadget?
	Slide 16: eBPF with Inspektor Gadget
	Slide 17: Event enrichment and filtering
	Slide 18: Event enrichment and filtering
	Slide 19: Anatomy of a gadget
	Slide 20: Anatomy of a gadget
	Slide 21: “Official” Gadgets
	Slide 22: Sample Gadgets
	Slide 23: Which type of gadget seems the most useful to you?
	Slide 24: Why Inspektor Gadget?
	Slide 25: Background
	Slide 26: Why Inspektor Gadget?
	Slide 27: Some examples of IG use cases 
	Slide 28: How you can leverage IG
	Slide 29: Inspektor Gadget Modes of Operation
	Slide 30: Inspektor Gadget Data Export Options
	Slide 31: Demo – trace DNS and top TCP
	Slide 32: Demo – trace DNS and top TCP
	Slide 33: What’s Next?
	Slide 34: Looking ahead
	Slide 35: Call to Action
	Slide 36: Thank you

