
Kernel observability using eBPF made
easy and approachable with Inspektor
Gadget

SCaLE 22x
Maya Singh & Jose Blanquicet
March 8th, 2025

Agenda

• Introductions
• Interactive poll
• Introduction to eBPF
• Introduction to Inspektor Gadget

• Demo
• How it works
• How you can use it

• Demos!

Introductions

Maya Singh
Product Manager @ Microsoft

Jose Blanquicet
Sr Software Engineer @ Microsoft

System Level Challenges

• OOM Kill events
• DNS queries not

resolving
• Deadlocks (when

a process doesn’t
proceed due to
another process
using resources)

Debugging Monitoring Security

• Identifying source
of high latency

• Visibility into CPU
usage

• Stress on the
system from a
specific container

• Process from a
container
excessively
reading/writing to a
file

• Identifying potential
malicious activity

• Shell open on a K8s
cluster

• Validating binary
changes in container
image

• Monitoring processes
accessing the
filesystem

• Seccomp profiles
generation

Menti Poll

Which of these issues do you have
the hardest time solving?

Menti Poll

What comes to mind when you
think about “eBPF”?

Intro to eBPF

What is eBPF?
eBPF is in-kernel bytecode runtime used for tracing, security,
networking …

Capabilities

+ Brings flexibility to the
kernel

+ Low strain from a
performance perspective

+ Won’t crash your kernel

eBPF traffic monitoring | Android Open Source Project
Keynote: eBPF - Everything You Need to Know in 5 Minutes - Thomas Graf, CTO, Isovalent (youtube.com)

Examples of eBPF use cases
Observability
eBPF can be used to measure CPU usage, memory allocation, and similar
metrics which can be used for performance troubleshooting

Security
eBPF can be used to enforce access control policies, you can
whitelist/blacklist specific system calls, network connection etc…

Networking
eBPF allows for packet filtering and modification within the Linux kernel
(Firewall rules)

https://source.android.com/docs/core/data/ebpf-traffic-monitor
https://www.youtube.com/watch?v=KhPrMW5Rbbc

eBPF Hooks
eBPF is event driven, when “hooks” are passed, eBPF programs are
executed

Source: Mauricio Vasquez Bernal & Chris Kuehl

Li
nu

x
Ke

rn
el

eBPF program

Network

eBPF program

Storage Hooks

eBPF Maps

Source: Mauricio Vasquez Bernal & Chris Kuehl

Key/Value structures to share information between eBPF programs
and user space applications

Application

Li
n

u
x

K
er

n
el

bpf() syscall

eBPF program

eBPF program

eBPF program

eBPF Map

Application

What is eBPF?
eBPF is in-kernel bytecode runtime used for tracing, security,
networking …

Capabilities

+ Brings flexibility to the
kernel

+ Low strain from a
performance perspective

+ Won’t crash your kernel

Challenges

+ Steep learning curve

+ Requires deep knowledge
of low-level systems
troubleshooting

+ Limited higher level
context

Intro to Inspektor Gadget

Why Inspektor Gadget

+ eBPF is an extremely powerful tool for gathering system information
+ But eBPF is hard – technically and intuitively
+ Once you have data, it’s still not immediately useful

+ How does this kernel data relate to my system as I understand it?
+ Where do I send the data?

+ Lots of additional tooling needed for…
+ Managing eBPF programs
+ Mapping kernel data to higher-level resources (K8s, container runtimes, etc.)
+ Doing userspace processing
+ Exporting data / providing data via API

Gadgets Gadgets encapsulate eBPF programs in OCI
images for powerful and performant systems
inspection in a secure way

Enrichment Container and K8s aware - automatically map
low-level systems information to high-level
Kubernetes and container resources

Framework An observability framework with everything you
need to collect, filter, format and export valuable
systems data

open source tool and
framework for data

collection and systems
inspection on

Kubernetes and Linux
hosts using eBPF

Output

Demo

Gadgets Gadgets encapsulate eBPF programs in OCI
images for powerful and performant systems
inspection in a secure way

Enrichment Container and K8s aware - automatically map
low-level systems information to high-level
Kubernetes and container resources

Framework An observability framework with everything you
need to collect, filter, format and export valuable
systems data

open source tools and
framework for data

collection and systems
inspection on

Kubernetes and Linux
hosts using eBPF

Output

Inspektor Gadget

SecurityMonitoringTroubleshooting

Linux OS
Linux OS

Optional
K8s Cluster

eBPF with Inspektor Gadget

Gadget

Kernel

eBPF map

Userspace

event

eBPF programs attach to hooks

like sockets, syscalls,

Tracepoints, etc. end run when

an event occurs

• Enrichment
• Filtering
• Userspace processing
• Data export
• Sharing & distribution
• Many modes of use

Enrichment & Filtering

Problem: events from eBPF give low-level data:
Kernel namespaces
cgroups

Solution: event enrichment adds high-level data:
Kubernetes pods, containers
Domain names or Kubernetes services from IP
Container information

Event filtering: showing a subset of events
From selected containers, Kubernetes pod, namespace, labels
Filtered in eBPF for performance, but abstracted for gadget authors

Demo

Intro to Gadgets

Anatomy of a gadget

Gadget (OCI Image)

Metadata

(yaml file)

eBPF programs+maps

(ELF file)

Userspace module

(Wasm file)

• Information about
• The gadget
• Capabilities
• Output formatting
• Build information

• One or more eBPF programs

• Userspace modules for post-
processing of eBPF data.

• Can be in any language WASM
supports

* Also looking to include
• Documentation
• Source code
• Logo
• etc.

How it works

ig

OCI registry

Gadget (OCI Image)

Metadata

(yaml file)

eBPF programs+maps

(ELF file)

Userspace module

(Wasm file)

Linux host

Image push

Image pull

Official Gadgets
Advise: Recommend system configurations based on collected information

seccomp-profile, network-policies
Audit: Audit a subsystem

seccomp
Profile: Profile different subsystems

block-io, cpu
Snapshot: Take a snapshot of a subsystem and print it

process, socket
Top: Gather, sort and periodically report events according to a given criteria

file, tcp
Trace: Trace and print system events

bind, dns, exec, mount, oomkill, tcp{drop, retrans}, open, few more…

Artifact Hub

Demo

Using Inspektor Gadget

Modes of Operation

Linux host
• Ig binary
• Ig inside a container

Client-server setup
• Ig runs as a service inside the host
• We use a client called gadgetctl to control the service (via API

call)
Kubernetes

• Ig is deployed via daemon set
• Kubectl-gadget plugin used to control the daemon set

Go library API

Gadget Instance Manifests

Exporting Options

Raw Data
You can consume via the CLI or export to a json file

Prometheus
You can export to Prometheus metrics

OpenTelemetry
We support logs and metrics through OTel

Demo

System Level Challenges

• OOM Kill events
• Trace oomkill

• DNS queries not
resolving

• Trace DNS

• Deadlocks (when a
process doesn’t
proceed due to
another process
using resources

• Deadlock

Debugging Monitoring Security

• Identifying source
of high latency

• Visibility into CPU
usage

• Profile cpu
• Stress on the

system from a
specific container

• Profile blockio
• Process from a

container
excessively
reading/writing to a
file

• Top file

• Identifying potential
malicious activity

• Shell open on a K8s
cluster

• Trace exec
• Validating binary

changes in container
image

• Trace exec
• Monitoring processes

accessing the
filesystem

• Trace open

• Seccomp profiles
generation

• Advise seccomp profile

What’s Next & Close Out

What’s next?

• 1.0
• New Graphical User

Interface (App)
• Gadgets around

enhanced CPU profiling
and off CPU

• Understand community
priorities

• Proper documentation for
all this ;-)

Call to Action

Think about how eBPF could be used to

enhance the projects you’re working on and

see if we have a gadget that could help you!

Thank you!

Web: inspektor-gadget.io
Slack: #inspektor-gadget on the Kubernetes Slack
Github: github.com/inspektor-gadget

Appendix

Some examples of IG use cases ☺

Source: Empowering Kubernetes Observability with eBPF on Amazon EKS | Containers
 CNCF On demand webinar: eBPF-based Kubernetes Security | CNCF

ARMO Amazon EKSMS Defender

ARMO and the
Opensource project
Kubescape use IG to
enhance detecting
vulnerabilities in
containers

Inspektor Gadget is
used in MS Defender
for Containers to
collect security
events, generate
insights and real-time
threat detection alerts.

Amazon EKS Users
leverage Inspektor
Gadget to inspect their
Kubernetes
environment with
eBPF tools

https://aws.amazon.com/blogs/containers/empowering-kubernetes-observability-with-ebpf-on-amazon-eks/
https://www.cncf.io/online-programs/cncf-on-demand-webinar-ebpf-based-kubernetes-security/

	Slide 1: Kernel observability using eBPF made easy and approachable with Inspektor Gadget SCaLE 22x Maya Singh & Jose Blanquicet March 8th, 2025
	Slide 2: Agenda
	Slide 3: Introductions
	Slide 4: System Level Challenges
	Slide 5: Menti Poll
	Slide 6: Menti Poll
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: open source tool and framework for data collection and systems inspection on Kubernetes and Linux hosts using eBPF
	Slide 16
	Slide 17: open source tools and framework for data collection and systems inspection on Kubernetes and Linux hosts using eBPF
	Slide 18: Inspektor Gadget
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: System Level Challenges
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Some examples of IG use cases

