
OpenSSF SLSA & NIST SSDF:
Emerging Software Supply Chain Security

Best Practices

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Tony Loehr
Developer Advocate & Evangelist
Twitter: @forkbombETH

● Software Engineer, Intuit Experimentation

Platform @ Intuit

● Software Engineer, Mint @ Intuit

● Contributor, SimBioSys Lab @ Emory University

About Moi

Agenda

1

2

3

4

5

6

7

Introduction & the rise of software supply chain attacks

NIST SSDF

Google SLSA

Comparing SSDF & SLSA

Covering gaps

Demo

Q&A

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Why do we need new
appsec frameworks?

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Attackers are
Shifting Priorities

Production Apps Developers

Software Delivery Pipelines

Software Supply Chain
Attacks are on the Rise

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

2018 2019 2020 2021

Nissan PHP Travis CI

Ubiquiti BreachSawFish

Dependency Confusion

FIFA 21

Bangkok Airways

Syniverse

SushiSwap

TwitchNintendo Wii

GoDaddy

SolarWinds

SITA

Xcode

Codecov

Kaseya

Snapchat

Apple iBoot Intel Samsung Windows XP

Mercedes CS:GO

Octopus

“By 2025, 45% of organizations worldwide
will have experienced attacks on

their software supply chains,
a three-fold increase from 2021.”

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

NIST SSDF
Secure Software Development Framework

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

● Directly inspired by OWASP SAMM

● Lists Gartner, the White House, and the

Department of Defense as general resources

NIST SSDF
Heritage

Presidential
Executive Order

● Coordinates across multiple federal agencies

● Software supply chain security and integrity are major focus

● Section 4 of the EO directs NIST to:

+ Solicit input from the private sector, academia, government

agencies, and others

+ Identify existing or develop new standards, tools, best practices,

and other guidelines to enhance software supply chain security

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

“Improving the Nation’s Cybersecurity (14028)”
issued on May 12, 2021

https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Software supply chain security
Presidential Executive Order

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

NIST
Presidential Executive Order

First, NIST is to define “critical software”
by June 26, 2021

Second, NIST is to publish security
measure guidance by July 11, 2021

Will consult with:

● National Security Agency (NSA)

● Office of Management and Budget (OMB)

● Cybersecurity & Infrastructure Security Agency (CISA)

● Director of National Intelligence (DNI)

Will consult with:

● Office of Management and Budget (OMB)

● Cybersecurity & Infrastructure Security Agency (CISA)

These guidelines will outline security measures for critical software

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Critical Software
NIST Tasks

Secure Software
Development Framework
(SSDF)

NIST SP
800-161

Cybersecurity Supply Chain
Risk Management
Practices for Systems and
Organizations (C-SCRM)

● First draft

Version 1.1 (September 30, 2021)

● Released in response to Section 4e.

● Second draft

Revision 1 (October 28, 2021)

● Released in response to Section 4c. ● Second draft

The Executive Order (EO) on Improving the Nation’s Cybersecurity (14028) directs

NIST released documents to enhance software supply chain security:

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Software Supply Chain Security
NIST Tasks

Section 4 of the order
directs NIST to consider
consumer product labeling

NIST will identify
key elements of
labeling program

NIST plans to produce a final
version of these criteria by
February 6, 2022.

● NIST shall educate the public on the

cybersecurity capabilities

+ Internet-of-Things (IoT) devices

+ Software development practices

● NIST also is to consider ways to

incentivize manufacturers and developers

to participate in these programs

● Define minimum requirements

and desirable attributes

● Will specify desired outcomes

● Allows providers and customers

to choose their best solutions

● IoT cybersecurity criteria for a consumer

labeling program and

● Secure software development practices

or criteria for a consumer software

labeling program

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Cybersecurity Labeling for Consumers
NIST Tasks

Cybersecurity Labeling for Consumers

Encourage innovation in manufacturers’ consumer-oriented

IoT and software security efforts, leaving room for changes in

technologies and the security landscape.

Factor in usability as a key consideration.

Build on national and international experience.

Be practical and not be burdensome to manufacturers

and distributors.

Allow for diversity of approaches and solutions across

industries, verticals, and use cases – so long as they are

deemed useful and effective for consumers.

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

NIST Tasks

Objective 5: Training

Objective 4: Rapid Response

Strengthen the understanding and performance of humans’ actions

that foster the security of EO-critical software and EO-critical

software platforms.

Quickly detect, respond to, and recover from threats and incidents

involving EO-critical software and EO-critical software platforms.

Objective 1: Protect

Objective 3: Identify (SBOM)

Objective 2: Confidentiality

Protect EO-critical software and EO-critical software

platforms from unauthorized access and usage.

Identify and maintain EO-critical software platforms and the software

deployed to those platforms to protect the EO-critical software from

exploitation.

Protect the confidentiality, integrity, and availability of data used

by EO-critical software and EO-critical software platforms.

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Critical Software Security Measures
NIST SSDF

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Risk Severity Schema
NIST SSDF

Level Type Description

01 Agency Low or
Moderate Risk

Adversarial or non-adversarial risk is assessed, which falls within the agency’s risk tolerance
thresholds. Assessed risk impact does not extend outside of the agency.

02 Agency High Risk The adversarial or non-adversarial-related risk is associated with a critical supplier, critical system,
or critical system component, and is assessed to have a high risk, per agency-established risk level
assessment. Assessed risk impact does not extend outside of the agency.

03 Significant Risk Adversarial-related significant risk assessed, with potential or known multi-agency/ mission(s)
or Government-wide impact.

04 National Security
Interest Risk

The adversarial-related significant risk with the potential to impact National Security Interest.

05 Urgent National
Security Interest Risk

The adversarial-related significant risk with imminent or present impact to National Security
Interest.

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Recommended Minimum Standard for
Vendor or Developer Verification of Code

NIST SSDF

Threat modeling helps
identify key or potentially
overlooked testing targets

● As testing is automated,

it can be repeated often

Static analysis

● Use a code scanner to look for top bugs

● Review for hard-coded secrets

Dynamic analysis

● Run with built-in checks and protections

● Create “black box” test cases

● Create code-based structural test cases

● Use test cases created to catch previous bugs

● Run a fuzzer.

● Run a web app scanner (when relevant)

Check included software (SBOM),
Fix critical bugs that are uncovered

Prepare the Organization

Protect the Software

● Perform secure software development at the organization level

● In some cases, this is required for each individual project

● Protect all components of the software from tampering

and unauthorized access

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Key Practices
NIST SSDF

Produce Well-Secured Software
● Produce well-secured software that has minimal security

vulnerabilities in its releases

Respond to Vulnerabilities
● Identify vulnerabilities in software releases

● Respond appropriately to address those vulnerabilities

● Prevent similar vulnerabilities from occurring in the future

Google SLSA

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA
framework

Our proposed solution is Supply chain Levels for Software Artifacts (SLSA,

pronounced “salsa”), an end-to-end framework for ensuring the integrity of

software artifacts throughout the software supply chain. It is inspired by

Google’s internal “Binary Authorization for Borg” which has been in use for the

past 8+ years and is mandatory for all of Google's production workloads.

The goal of SLSA is to improve the state of the industry,

particularly open source, to defend against the most

pressing integrity threats. With SLSA, consumers can make

informed choices about the security posture of the software

they consume.

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA Levels

Level Description Example

01 Documentation of the build process Unsigned provenance

02 Tamper resistance of the build services Hosted source/build, signed provenance

03 Prevents extra resistance to specific threats Security controls on hosts, non-falsifiable provenance

04 Highest levels of confidence and trust Two-party review + hermetic builds

Level Requirements

00 No guarantees. SLSA O represents the lack of any SLSA level.

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA Levels

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA Levels

01
The build process must be fully scripted/automated and generate provenance. Provenance is metadata about how an artifact was built,
including the build process, top-level source, and dependencies. Knowing the provenance allows software consumers to make risk-based
security decisions. Provenance at SLSA 1 does not protect against tampering, but it offers a basic level of code source identification and can
aid in vulnerability management.

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA Levels

02
Requires using version control and a hosted build service that generates authenticated provenance. These additional requirements give
the software consumer greater confidence in the origin of the software. At this level, the provenance prevents tampering to the extent that
the build service is trusted. SLSA 2 also provides an easy upgrade path to SLSA 3.

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA Levels

03
The source and build platforms meet specific standards to guarantee the auditability of the source and the integrity of the
provenance respectively. We envision an accreditation process whereby auditors certify that platforms meet the requirements, which
consumers can then rely on. SLSA 3 provides much stronger protections against tampering than earlier levels by preventing specific classes
of threats, such as cross-build contamination.

04
Requires two-person review of all changes and a hermetic, reproducible build process. Two-person review is an industry best practice
for catching mistakes and deterring bad behavior. Hermetic builds guarantee that the provenance's list of dependencies is complete.
Reproducible builds, though not strictly required, provide many auditability and reliability benefits. Overall, SLSA 4 gives the consumer a high
degree of confidence that the software has not been tampered with.

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA Levels

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA framework

Artifact

Process

Platform

SCM CI/CDDevelope
r

Modify
Code

(C)

Compromise
source control

(B)

Compromise
Build Platform

(D)

Compromise
Package Repository

(G)

Bypass CI/CD
(F)

Use bad
dependency

(E)

Use bad package
(H)

Submit bad
code
(A)

Use

Dependenc
y

Source Build

Distribution

Package

Source Integrity Build Integrity

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

The 5 Categories of
SLSA Requirements

01 / Source requirements

02 / Build process requirements

03 / Provenance generation requirements

04 / Provenance content requirements

05 / Common requirements

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google’s SLSA
framework

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Source
Google’s SLSA framework

Requirement Description SLSA

Version controlled Every change to the source is tracked. 2

Verified history Every change in the revision's history has at least one strongly authenticated
actor identity (author, uploader, reviewer, etc.) and timestamp.

3

Retained indefinitely The revision and its change history are preserved indefinitely and cannot
be deleted.

4

Two-person reviewed Every change in the revision's history was agreed to by two trusted persons prior
to submission, and both of these trusted persons were strongly authenticated.

4

Requirement Description SLSA

Scripted build All build steps were fully defined in some sort of "build script". The only manual command, if any,
was to invoke the build script.

1

Build service All build steps ran using some build service, not on a developer's workstation. 2

Ephemeral environment The build service ensured that the build steps ran in an ephemeral environment,
such as a container or VM, provisioned solely for this build, and not reused from a prior build.

3

Isolated The build service ensured that the build steps ran in an isolated environment free of influence from other build
instances, whether prior or concurrent.

3

Parameterless The build output cannot be affected by user parameters other than the build entry point and the top-level source
location. In other words, the build is fully defined through the build script and nothing else.

4

Hermetic All transitive build steps, sources, and dependencies were fully declared up front with immutable references, and the
build steps ran with no network access.

4

Reproducible Re-running the build steps with identical input artifacts results in bit-for-bit identical output. Builds that cannot meet
this MUST provide a justification why the build cannot be made reproducible.

O

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Build
Google’s SLSA framework

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Provenance
Google’s SLSA framework

Requirement Description SLSA

Available The provenance is available to the consumer in a format that the consumer accepts. The format SHOULD be
in-toto SLSA Provenance, but another format MAY be used if both producer and consumer agree and it meets
all the other requirements.

1

Authenticated The provenance's authenticity and integrity can be verified by the consumer. This SHOULD be through a digital
signature from a private key accessible only to the service generating the provenance.

2

Service generated The data in the provenance MUST be obtained from the build service (either because the generator is the build
service or because the provenance generator reads the data directly from the build service).

Regular users of the service MUST NOT be able to inject or alter the contents, except as noted below.

2

Non-falsifiable Provenance cannot be falsified by the build service's users. 3

Dependencies complete Provenance records all build dependencies that were available while running the build steps. This includes the
initial state of the machine, VM, or container of the build worker.

4

Requirement Description SLSA

Identifies artifact The provenance MUST identify the output artifact via at least one cryptographic hash. 1

Identifies builder The provenance identifies the entity that performed the build and generated the provenance. 1

Identifies source The provenance identifies the source containing the top-level build script, via an immutable reference.
Example: git URL + branch/tag/ref + commit ID.

1

Identifies entry point The provenance identifies the "entry point" or command that was used to invoke the build script. 1

Includes all build
parameters

The provenance includes all build parameters under a user's control. See Parameterless for details. 3

Includes all transitive
dependencies

The provenance includes all transitive dependencies listed in Dependencies Complete. 4

Includes reproducible info The provenance includes a boolean indicating whether build is intended to be reproducible and, if so, all information
necessary to reproduce the build.

4

Includes metadata The provenance includes metadata to aid debugging and investigations. This SHOULD at least include start and end
timestamps and a permalink to debug logs.

O

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Provenance Content
Google’s SLSA framework

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Provenance Content
Google’s SLSA framework

{
“_type": “http://in-toto.io/Statement/v0.1”,
// Output file; name is “_” to indicate “not important”.
"subject": [{"name" : “_”, digest”: {“sha256”: “5678...”}}],
"predicateType": "https://slsa.dev/provenance/v0.2",
"predicate": {
"buildType": "https://example.com/M akefile",
"builder": { "id": "mailto:person@ example.com"},
"invocation": {
"configSource": {
"uri": "https://example.com/example-1.2.3.tar.gz",
"digest": {"sha256": “1234...”},
"entryPoint": "src:foo", // target "foo" in directory “Src”
},
"parameters": ‹ "CFLAGS": “-03”} // extra args to ‘make’
},
"materials": [{
"uri": "https://example.com/example-1.2.3.tar.gz",
"digest": {"sha256": "1234..."}

}]
}
}

SBOM =/= Provenance

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Common
Google’s SLSA framework

Requirement Description SLSA

Security The system meets some TBD baseline security standard to prevent compromise.
(Patching, vulnerability scanning, user isolation, transport security, secure boot,
machine identity, etc. Perhaps NIST 800-53 or a subset thereof.)

4

Access All physical and remote access must be rare, logged, and gated behind
multi-party approval.

4

Superusers Only a small number of platform admins may override the guarantees listed here.
Doing so MUST require approval of a second platform admin.

4

Key Learnings from
NIST SSDF and Google SLSA

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

SSDF focuses on “what”
while

SLSA focuses on “how”

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Complementary Frameworks
NIST SSDF and Google SLSA

The NIST SSDF is focused on defining
minimum requirements for software used
within critical infrastructure, particularly
federally

Google proposes a specific model for scoring
the supply chain, focused on improving
security within the build phase throughout
deployment

NIST focuses on

“what”
Google focuses on

“how”

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Complementary Frameworks
NIST SSDF and Google SLSA

Tiers and levels both range
from 1-4, with higher
numbers correlating to
increased cybersecurity

Tiers VS Levels

Higher tiers within the NIST
SSDF represent increasing
degrees of rigor and
sophistication in
cybersecurity risk
management practices

Higher levels within SLSA
represent greater maturity;
each level of SLSA acts as
a milestone towards the
eventual goal of achieving
SLSA 4

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Review for
Hard-Coded Secrets

● hardcoded passwords

● private encryption keys

NIST: use heuristic tools
to examine the code for:

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Review for
Hard-Coded Secrets

● Source

● Build

● Registry

● Logs

Consider: where should your organization
look for hard-coded secrets?
to examine the code for:

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Uniformly Enforce
Security Policy

SLSA: Common
requirements

● Access

● Superusers

● Security

SLSA and NIST both highlight the importance of establishing baseline
security standards to prevent compromise

NIST 800-53 Security
and Privacy Controls for
Information Systems
and Organizations

● Referenced explicitly

by SLSA

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Uniformly Enforce
Security Policy

Consider:
> How does your organization enforce security policy?
> Does you enforce security policies on each tool in the pipeline?
> Are you tracking the settings? Changes to settings?
> Does your organization have visibility into the components utilized?

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Detect and Remediate
Misconfigurations

Maintain system
configurations and inventories

Enforce security configuration
settings for IT products

● Hardware

● Software

● Firmware

● Documentation

NIST: Configuration management

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Detect and Remediate
Misconfigurations

Consider:
> Where are you scanning for misconfigurations?
> How often do you scan?
> Do you employ automated remediation?

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Reduce Code
Tampering Risk

Enforce source
requirements

● Two-person review

SLSA

Enforce build
requirements

● Ensure hermetic builds

● Utilize code signing

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Reduce Code
Tampering Risk

Consider:
> Are you adhering to the principle of least priviledge?
> How does your organization enforce access control policies?
> Do you enforce code signing? 2FA or MFA?
> Are branch protections enabled?

Gaps:

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Even as complementary frameworks, SLSA
and the SSDF don’t cover everything that

should be done to mitigate risk

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

● Source code is a software company’s intellectual property

● Neither NIST nor Google frameworks address this need

+ SLSA suggests preventative measures

+ SSDF suggests to have a contingency plan in place

+ There is no direct guidance to identify leaks

Identify Suspicious
Behavior and Code Leaks

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Slow down attackers with
each layer of protection

Defense in Depth

Least privileged access

● Across all DevOps tools

Harden configuration

● Strong version control policies

● Harden security of CI/CD pipelines

● Use trusted component registries

● Change default passwords

Verify integrity at every stage

Audit thoroughly, audit frequently –
don’t overlook the basics

Centrally manage policies

● Enforce them policies consistently across tools,

teams & phases of the SDLC

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Anomaly detection

Anomalies in access

● Access grants

Anomalies in configurations

● Monitor configuration changes

+ In tools

+ In code

Anomalies in commits

● Deviation from defined workflows

● Code the developer never touched before

Anomalies in Behavior

● Commits outside of the user’s normal working hours

● Peer review from non-developer accounts

● Changes in work patterns for employees leaving the company

Learn More:

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Google SLSA & NIST SSDF: Emerging Software Supply Chain Security Best Practices

Q&A

https://calendly.com/cycode-team/free-repo-audit

Thank You

Tony Loehr
Developer Advocate

tony@cycode.com

