
© 2020 All Rights Reserved

Exploring
Linux Memory Usage

and
Disk IO performance

Frits Hoogland
Yugabyte

© 2020 All Rights Reserved

Topic: disk IO and disk IO performance

• The main topic of this presentation is disk IO performance on linux

• In order to understand disk IO performance, a detailed understanding of
disk IO and related technologies is necessary.

• This presentation explains some the mechanics, in order to let the
attendee understand buffered disk IO performance better.

• Memory usage is quite fundamentally closely related to cached IO
performance.

© 2020 All Rights Reserved

Disk IO and memory

• Any regular disk IO is performed buffered.
• Buffered means: using the operating system memory for caching.

• You can do IO without using the operating system for caching.
• Only if you explicitly request it: O_DIRECT.
• Makes sense if you don't want to stage memory in two caches.

• If you are not sure which you are using you are quite probably doing
buffered IO.

© 2020 All Rights Reserved

Where does buffered IO go?

• Linux does not have a dedicated memory area as 'page cache'.
• Traditional Unix such as HPUX and AIX have that.

• Buffered IO must allocate memory to store the IO.
• Even if that means it will get removed immediately b/c memory pressure(!)
• Writes are special.

• Therefore it competes with regular memory usage.

© 2020 All Rights Reserved

Okay: but where does buffered IO go?

• Linux provides an insight into its memory usage via /proc/meminfo
• Which is a messy gathering of memory related statistics.

• Named values in 'meminfo' do contain overlapping memory allocations,
and can contain multiple, different allocations.

• Roughly put, it should be in 'Cached', 'Dirty' and 'Mapped', which can
contain other allocated memory, such as shared memory.

© 2020 All Rights Reserved

You are not really making it understandable!

• I know.

• I think it's wrong to try to capture page cache size.

• You must have memory that is usable for buffering purpose.
• Which is also memory for application usage.

• The best way to assess usable memory is use MemAvailable

© 2020 All Rights Reserved

How about 'MemFree'?

• There also is the MemFree statistic in 'meminfo'?

• MemFree is not 'free' as in available.
• It is a small amount of memory pre-cleaned for direct usage.
• There will be lots after startup, because it was never touched.

• Linux tries to do the bare minimum, and thus keep used memory around.
• And thus to reduce MemFree to a minimum (vm.min_free_kbytes).
• The swapper force-frees memory. (Page daemon)
• Processes explicitly freeing memory will add to MemFree.
• https://dev.to/yugabyte/what-is-free-memory-in-linux-18km

https://dev.to/yugabyte/what-is-free-memory-in-linux-18km

© 2020 All Rights Reserved

MemAvailable

• Statistic in /proc/meminfo.

• Kernel estimation of available memory without requiring swapping.

• Many of the other statistics (in /proc/meminfo) contain information, are
useful, but do not provide a full picture to assess available memory.

© 2020 All Rights Reserved

Why is this important actually?

• Buffering can do miracles for IO performance*.

• Equally it can do "miracles" for container/application performance.

© 2020 All Rights Reserved

Let's test!

• Tests done on Amazon EC2:
• c5.large VM (20000/4000 IOPS, 594/82 MBPS)
• EBS: GP3 250M (3000 IOPS, 125 MBPS)

• I am not running into my bursting limits so concrete:
• IOPS: 3000
• MBPS: 125

• EC2 VM limits page:https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ebs-optimized.html

• Not easy to find.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html

© 2020 All Rights Reserved

Read: 2G

• Drop the page cache
• Validate available memory
• Run a fio read test reading 2G:

fio --name test --filename /tmp/fiotest
 --ioengine sync --rw randread --bs 8k
 --invalidate 0 --filesize 2G

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Read: 2G

• This is a summary from the run:

IOPS=2609, BW=20.4MiB/s (21.4MB/s)(2048MiB/100465msec)

• My limits are 125 MBPS and 3000 IOPS.
• Why didn't we reach any of these? Is AWS lying?
• No: look at the latency:

clat (usec): min=195, max=27385, avg=382.22, stdev=263.41

• 382 (avg usec) * 2609 (IOPS) ≈ 996638 ≈ 1 second: latency bound!

© 2020 All Rights Reserved

Read: 2G

• Now lets perform the exact same run again

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Read: 2G

• This is quite much different, isn't it?

read: IOPS=585k, BW=4571MiB/s (4793MB/s)(2048MiB/448msec)

• My limits are 125 MBPS and 3000 IOPS.
• Now I did 585000 IOPS and 4571 MBPS!

clat (nsec): min=893, max=19771, avg=1342.90, stdev=406.95

• It was all cache, no physical IOs were performed:
ios=0/0, merge=0/0, ticks=0/0, in_queue=0, util=0.00%

© 2020 All Rights Reserved

Read: 4G

• Drop the page cache
• Validate available memory
• Run a fio read test reading 4G:

fio --name test --filename /tmp/fiotest
 --ioengine sync --rw randread --bs 8k
 --invalidate 0 --filesize 2G

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Read: 4G

• This is a summary from the run:

read: IOPS=2702, BW=21.1MiB/s (22.1MB/s)(4096MiB/193996msec)

• My limits are 125 MBPS and 3000 IOPS.
• IOPS rate identical to 2G run, indicates being latency bound again.
• Time and disk physical IOs roughly doubled, as expected.

© 2020 All Rights Reserved

Read: 4G

• Now lets perform the exact same run again

• Caveat: I had to slightly alter the fio statement.
• Add option --norandommap
• This prevents every 8k IO offset from being touched exactly once.

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Read: 4G

• This is a summary from the run:

read: IOPS=4206, BW=32.9MiB/s (34.5MB/s)(4096MiB/124633msec)

• My limits are 125 MBPS and 3000 IOPS.
• IOPS rate increased, because of caching
• Still had to do a lot of IO:

ios=330920/105

issued rwts: total=524288,0

© 2020 All Rights Reserved

Reality

• Let's take a look at the memory figures again:
[centos@ip-172-158-19-16 ~]$./eatmemory-rust/target/release/eatmemory -q

available memory : 3179 MB

total memory : 3664 MB, free memory : 3267 MB, used memory : 166 MB

total swap : 0 MB, free swap : 0 MB, used swap : 0 MB

• Having 166MB used is not a realistic scenario.
• A server would typically have an application running!
• Which is what reads that data to serve it, right?
• What if we occupy 50% of memory?

© 2020 All Rights Reserved

eatmemory

• I build a tool that can do that: eatmemory

[centos@ip-172-158-19-16 ~]$./eatmemory-rust/target/release/eatmemory -s 2000

done. press enter to stop and deallocate

• Credits to original eatmemory.c tool (https://github.com/julman99/
eatmemory.git)

• Let's try the same 2G run again!

https://github.com/julman99/eatmemory.git
https://github.com/julman99/eatmemory.git

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Read: 2G / 50% of 4G memory taken

• This is a summary from the run:

read: IOPS=2671, BW=20.9MiB/s (21.9MB/s)(2048MiB/98136msec)

• My limits are 125 MBPS and 3000 IOPS.

• Time is slightly less (98136 vs. 100465), but generally equal.
• Because despite the memory allocation, there was no change: bound by IO.

© 2020 All Rights Reserved

Read: 2G / 50% of 4G memory taken

• Now lets perform the same run again
• Add option --norandommap

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Read: 2G / 50% of 4G memory taken

read: IOPS=3525, BW=27.5MiB/s (28.9MB/s)(2048MiB/74366msec)

• My limits are 125 MBPS and 3000 IOPS.
• This gone beyond the limits (IOPS, 3000 <> 3525).
• Time difference with previous 2nd 2G run: 74.3 <> 0.4 second (!)

• Reason: physical IO had to be performed:
ios=192264/64, merge=0/6, ticks=72937/55, in_queue=72978, util=98.01%

© 2020 All Rights Reserved

Write: 2G

• Validate available memory
• Run a fio write test writing 2G:

fio --name test --filename /tmp/fiotest
 --ioengine sync --rw randwrite --bs 8k
 --filesize 2G

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Write: 2G

• This is a summary from the run:

IOPS=22.1k, BW=173MiB/s (181MB/s)(2048MiB/11840msec)
clat (usec): min=2, max=18861, avg=44.34, stdev=597.77

• My limits are 125 MBPS and 3000 IOPS.
• IOPS = 22100, which is significantly more than 3000 IOPS.
• Reason: only 24% was written;

ios=0/61815

issued rwts: total=0,262144

© 2020 All Rights Reserved

Write: 2G -- write details

• Why aren't all writes cached, like all reads were?
• Writes are special!
• Writes cannot be discarded like reads can, they must be written first.
• Writes can/should not exhaust available memory.
• Therefore: vm.dirty_background_ratio, vm.dirty_ratio, others.
• Ratio is taken from available memory, unlike popular believe of total mem.
• https://dev.to/fritshooglandyugabyte/linux-buffered-write-latency-10mc

• In linux, processes performing buffered writes do not actually write to disk.
• Produce dirty pages, and get throttled (wait in write()) to balance.

https://dev.to/fritshooglandyugabyte/linux-buffered-write-latency-10mc

© 2020 All Rights Reserved

Write: 500M

• Validate available memory
• Run a fio write test writing 500M:

fio --name test --filename /tmp/fiotest
 --ioengine sync --rw randwrite --bs 8k
 --filesize 500M

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Write: 500M

• This is a summary from the run:

IOPS=193k, BW=1506MiB/s (1579MB/s)(500MiB/332msec)

• My limits are 125 MBPS and 3000 IOPS.
• IOPS = 193000, MBPS = 1506.
• Reason; no write (throttling):

ios=0/0, merge=0/0, ticks=0/0, in_queue=0, util=0.00%

• Why? Available: 3072 MB, vm.dirty_ratio: 30% = 922MB

© 2020 All Rights Reserved

Reality

• The writes so far were also conducted with no memory used.
• Let's occupy 50% and perform the same tests again.

© 2020 All Rights Reserved

Write: 2G / 50% of 4G memory taken

• Validate available memory
• Run a fio write test writing 2G:

fio --name test --filename /tmp/fiotest
 --ioengine sync --rw randwrite --bs 8k
 --filesize 2G

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Write: 2G / 50% of 4G memory taken

• This is a summary from the run:

IOPS=6581, BW=51.4MiB/s (53.9MB/s)(2048MiB/39832msec)

• My limits are 125 MBPS and 3000 IOPS.
• IOPS = 6581, MBPS = 51 (vs . 22100 IOPS, 173 MBPS no mem pressure)
• Reason; write throttling:

ios=216/151456

• Why? Available: 1018 MB, vm.dirty_ratio: 30% = 305MB

© 2020 All Rights Reserved

Write: 500M / 50% of 4G memory taken

• How about writing 500M? That was really fast previously?

• Run a fio write test writing 500M:

fio --name test --filename /tmp/fiotest
 --ioengine sync --rw randwrite --bs 8k
 --filesize 500M

© 2020 All Rights Reserved

© 2020 All Rights Reserved

Write: 500M / 50% of 4G memory taken

• This is a summary from the run:

IOPS=25.1k, BW=196MiB/s (206MB/s)(500MiB/2549msec) (332ms)

• My limits are 125 MBPS and 3000 IOPS.
• IOPS = 25100, MBPS = 196 (vs . 193000 IOPS, 1506 MBPS no mem pressure)
• Despite feeling fast, performance was severely impacted!!
• Reason; write throttling:

ios=17/20846

• Why? Available: 1023 MB, vm.dirty_ratio: 30% = 307MB

© 2020 All Rights Reserved

Conclusion

• If you are using buffered IO, do you rely on caching for performance?
• Are you keeping track of Available Memory?
• Available memory ≈ memory acting as/available for cache + regular alloc.

• Understand the differences between read and write cache properties:
• Data must be read before it can be cached and reused.
• A variable proportional limit is imposed on # dirty buffers.

• Kernel applies write throttling when # dirty pages increases.

© 2020 All Rights Reserved

Conclusion

• You have to understand your active dataset
• Which consists of reads and writes.
• The cache effectivity is relative to available memory.

• This means you might seem to suffer random IO performance issues.
• Which can be caused by either:

• Change in the active dataset.
• Change in available memory

© 2020 All Rights Reserved

PS

• The tests were performed on linux without swap.
• Buffered IO needs buffers which is a memory allocation.
• It competes with regular IO allocations.

• Therefore, linux will evaluate available memory using a LRU mechanism.
• Therefore, bursts of IO buffers usage
• Could push seldom used mapped allocations to swap.

© 2020 All Rights Reserved

