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● Project focuses on enhancing autonomous vehicle safety against cyberattacks through precise stop sign 

detection using AI.

● Utilizes YOLO architecture variants including YOLOv5mu, YOLOv8 from Roboflow, and YOLOv8s from 

Ultralytics, with YOLOv8 from Roboflow proving most effective.

● Development involves calibrating AI system to reliably detect stop signs, crucial for safe autonomous vehicle 

operation.

● Creates six dataset versions with over 46,535 images, featuring manually crafted cyberattack simulations to 

comprehensively assess system's precision.

● Achieves up to 90% accuracy in stop sign classification confidence, showcasing effectiveness of YOLOv8 

model and comprehensive datasets even in challenging conditions.

● Highlights critical role of computer vision techniques and extensive datasets in bolstering autonomous 

vehicle safety against cyber threats.

● Review underscores project's success in advancing Trustworthy AI and vehicle safety through innovative use 

of YOLOv8 model and targeted datasets.

Abstract
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Quick Facts

● 90% of car accidents are caused by human error

● Self-autonomous cars can reduce car accidents by 

34%

● Market adoption of self-driving vehicles only 

projected to be 5% by 2030

● 56% of Americans remain skeptical about 

self-driving vehicles

● Cyberattacks have surged over 600% in 2023
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Background Research
Problem:

● A critical challenge in the deployment of self-driving cars is ensuring their ability to accurately perceive 
and react to the environment. 

● Many cyber attacks, although seemingly minor, can have significant repercussions, including the potential 
to cause accidents or disrupt traffic systems.
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● This is especially pertinent in scenarios where 
external factors, such as vandalized road signs or 
subtle cyberattacks, can compromise the 
vehicle's sensors and decision-making 
algorithms.

● Such attacks aim to deceive the AI algorithms 
responsible for interpreting sensor data, 
potentially leading to catastrophic outcomes.

Common cyber attack scenarios to self-driving machine learning



Background Research
Solution:

● In addressing the challenges posed by cyberattacks on autonomous vehicle sensors, the proposed 
solution involves a multi-layered approach leveraging advanced deep learning techniques, anomaly 
detection, and data augmentation.

● This solution aims to enhance the resilience of image detection systems, with a particular focus on 
improving traffic sign recognition in various adversarial scenarios.
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Stop Sign recognition model based on computer vision algorithm YOLO 5 architecture



● The YOLOX model is an advancement in object detection, surpassing previous versions of YOLO in 

performance. It incorporates several key innovations. Firstly, it employs an anchor-free mechanism which 

simplifies the detection process by reducing the number of design parameters and predictions per image, 

enhancing efficiency. Additionally, YOLOX uses a concept called 'multi positives' which optimizes 

high-quality predictions to balance the training process. Finally, the SimOTA feature in YOLOX involves 

advanced label assignment, considering factors like loss/quality awareness and center prior, to enhance 

detection accuracy.
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Background Research

Computer vision neural network training architecture processing
Illustration of the difference between YOLOv3 head
 and the proposed decoupled head



Statement of Purpose, Hypothesis

Statement of Purpose: 

This project seeks to create an AI solution enhancing the cybersecurity of self-driving vehicles by improving 
image detection capabilities to more accurately identify and neutralize anomalies and adversarial attacks, such as 
traffic signs.
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Hypothesis:

If our model is used on a self-driving car, then 
it should be able to detect if a traffic sign has 
undergone a cyber attack because with the 
given dataset, it recognizes the subtle 
differences between a regular traffic sign and 
one that has been cyber-attacked.



  Procedure
1. Define “Cyber attack”

○ Defining what constitutes a cyberattack in this context requires a clear understanding of the 
threshold at which a perturbation becomes significant enough to mislead the sensor.

T = min { δ ∶ P(X + δ) ≠ P(X) }

○ The threshold T is the smallest amount by which the given sensor input X shifts such that the 
resulting perturbation is different from without perturbation.

2. Collect Data

○ Collecting scenarios that will train the model to be able to recognize and respond to cyberattacks.

○ Γ(C) is the fraction that quantifies how comprehensively the set C represents the range of possible 
scenarios
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  Procedure
3. Augment/label the data

○ The data needs to be pre-processed so that the model can use it train

A(x) = {x’, x’’, x’’’, ... }

○ The augmentation of an image x contains some form of augmentation being rotation, scaling, noise 
represented by x’, x’’, x’’’, etc.
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Dataset sample and dataset generation with Roboflow



  Procedure
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4. Train the Model

○ The data is put under the YOLOv8 
architecture to train and identify 
patterns/labels

V(s) = E6∼E[R(s, a) + γV(s!)]

5. Test the Model

○ Use base images to test accuracy and 
consistency of model

○ Compare with other models 

image_1

image_4

image_3

image_2



Procedure (Demo)

6. Model Accuracy Verification with Robot Self-Driving Car

o On-device computer vision algorithm

o Real-time detection and analysis

o Adaptive learning and data collection
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Results
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YOLOv8 Version 6

stop-sign cyber-attack
image_1 0.95 0
image_2 0.65 0.82
image_3 0 0.89
image_4 0.56 0

YOLOv5mu COCO pre-trained

stop-sign cyber-attack
image_1 0.942 0
image_2 0.912 0
image_3 0 0.936
image_4 0 0.914

A comparison between 2 different computer vision models in the same dataset. YOLOv8 Version 6 shows 
the algorithms ability to accurately identify stop signs as well as classify cyber-attacks, while also not 
mistaking the blank stop sign and slow sign as a stop sign. YOLOv5 mu performs just as well when 
identifying stop-signs but misclassified when identifying cyber-attacks



Results

image stop sign average cyber attack average

image_1 0.857125 0.0375

image_2 0.316125 0.61075

image_3 0 0.838875

image_4 0.209875 0.284

The average in accuracy of every model when classifying stop signs and cyber attacks
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○ Image 1 is normally accurately detected as a stop sign but in a few poor models is not
○ Image 2, on average, can be accurately detected as not being a stop sign or a cyber attack
○ Image 3 has a lower consistency than image 1 but normally is accurately detected as a cyber 

attack
○ Image 4, on average, does better than image 2 on realizing the image is neither a stop sign or a 

cyber attack



Results 
(YOLOv8 Version 6 - Roboflow)
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○ Mean Average Precision = average precision across 
multiple levels of confidence thresholds

i. Provides a single value that summarizes the 
overall performance of a model

ii. Performance increases as more epochs
○ Box Loss

i. A component of the total loss that penalizes the 
model for errors in predicting the coordinates of 
bounding boxes

○ Class Loss
i. Another component of the total loss that 

indicates performance on predicting class
○ Object Loss

i. Another component that penalizes the model for 
failing to detect and classify objects present in the 
grid cell

○ More epochs -> better results



15

Confusion Matrix (YOLOv8)

Confusion Matrix YOLOv8



Results (YOLOv8s - Ultralytics)

Epochs

A
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○ mAP50(B) = Mean Average Precision at 50 IoU - for Boxes 
i. 50 IoU = threshold used to determine whether a predicted bounding box is considered a 

correct detection (if it is above 50% it is a correct detection)
ii. (B) = bounding boxes
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○ mAP50-95(B) = same as above except at a higher predicted bounding box threshold 
○ precision(B) = accuracy of the predicted bounding box
○ recall(B) = ration of true positive predictions to the total number of actual positives (how well 

the model captures all relevant objects in the dataset)
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Comparison with Yolo V5 and Yolo V8 in Patch Training

Results (YOLOv8 VS YOLOv5 )



Social Impact: The Flywheel Effect
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Conclusion

● Various methodologies employed to address challenges of cyber attacks on autonomous vehicle sensors.

● Definition and classification of cyberattacks crucial in shaping diverse training sets for AI models.

● Datasets ranged from a few dozen to over 46,000 images, pivotal in training AI models.

● Version 6 dataset demonstrated remarkable ability to recognize normal and manipulated traffic signs with 

up to 90% accuracy.

● Selection and optimization of YOLOv8 model from Roboflow critical for superior performance in 

recognizing and classifying stop signs accurately.

● Project's uniqueness lies in its focus on recognizing cyber attacks on traffic signs in autonomous vehicle 

domain.

● Sets foundation for protective countermeasures in AI-assisted society.

● Represents significant advancement in Trustworthy AI for autonomous vehicles.

● Highlights potential of advanced computer vision models and comprehensive datasets in enhancing 

safety and reliability of autonomous vehicle systems.

● Provides insights for further advancements in protecting autonomous vehicles from evolving cyber 

threats.
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