### TrustworthyAI: Adversarial Attacks and Defensive Strategies in Self-Driving Systems using Computer Vision and Artificial Intelligence

**Ethan Sun** 



## Abstract

- Project focuses on enhancing autonomous vehicle safety against cyberattacks through precise stop sign detection using AI.
- Utilizes YOLO architecture variants including YOLOv5mu, YOLOv8 from Roboflow, and YOLOv8s from Ultralytics, with YOLOv8 from Roboflow proving most effective.
- Development involves calibrating AI system to reliably detect stop signs, crucial for safe autonomous vehicle operation.
- Creates six dataset versions with over 46,535 images, featuring manually crafted cyberattack simulations to comprehensively assess system's precision.
- Achieves up to 90% accuracy in stop sign classification confidence, showcasing effectiveness of YOLOv8 model and comprehensive datasets even in challenging conditions.
- Highlights critical role of computer vision techniques and extensive datasets in bolstering autonomous vehicle safety against cyber threats.
- Review underscores project's success in advancing Trustworthy AI and vehicle safety through innovative use of YOLOv8 model and targeted datasets.

# **Quick Facts**

- 90% of car accidents are caused by human error
- Self-autonomous cars can reduce car accidents by 34%
- Market adoption of self-driving vehicles only projected to be 5% by 2030
- 56% of Americans remain skeptical about self-driving vehicles
- Cyberattacks have surged over 600% in 2023



## **Background Research**

### **Problem:**

- A critical challenge in the deployment of self-driving cars is ensuring their ability to accurately perceive and react to the environment.
- Many cyber attacks, although seemingly minor, can have significant repercussions, including the potential to cause accidents or disrupt traffic systems.
- This is especially pertinent in scenarios where external factors, such as vandalized road signs or subtle cyberattacks, can compromise the vehicle's sensors and decision-making algorithms.
- Such attacks aim to deceive the AI algorithms responsible for interpreting sensor data, potentially leading to catastrophic outcomes.



Common cyber attack scenarios to self-driving machine learning

## **Background Research**

### Solution:

- In addressing the challenges posed by cyberattacks on autonomous vehicle sensors, the proposed solution involves a multi-layered approach leveraging advanced deep learning techniques, anomaly detection, and data augmentation.
- This solution aims to enhance the resilience of image detection systems, with a particular focus on improving traffic sign recognition in various adversarial scenarios.



Stop Sign recognition model based on computer vision algorithm

rchitecture

### **Background Research**

• The YOLOX model is an advancement in object detection, surpassing previous versions of YOLO in performance. It incorporates several key innovations. Firstly, it employs an anchor-free mechanism which simplifies the detection process by reducing the number of design parameters and predictions per image, enhancing efficiency. Additionally, YOLOX uses a concept called 'multi positives' which optimizes high-quality predictions to balance the training process. Finally, the SimOTA feature in YOLOX involves advanced label assignment, considering factors like loss/quality awareness and center prior, to enhance detection accuracy.



Illustration of the difference between YOLOv3 head and the proposed decoupled head



Computer vision neural network training architecture processing

## Statement of Purpose, Hypothesis

### **Statement of Purpose:**

This project seeks to create an AI solution enhancing the cybersecurity of self-driving vehicles by improving image detection capabilities to more accurately identify and neutralize anomalies and adversarial attacks, such as traffic signs.

### Hypothesis:

If our model is used on a self-driving car, then it should be able to detect if a traffic sign has undergone a cyber attack because with the given dataset, it recognizes the subtle differences between a regular traffic sign and one that has been cyber-attacked.



### Procedure

### 1. Define "Cyber attack"

 Defining what constitutes a cyberattack in this context requires a clear understanding of the threshold at which a perturbation becomes significant enough to mislead the sensor.

 $T = \min \{ \, \delta : P(X + \delta) \neq P(X) \, \}$ 

• The threshold T is the smallest amount by which the given sensor input X shifts such that the resulting perturbation is different from without perturbation.

### 2. Collect Data

- Collecting scenarios that will train the model to be able to recognize and respond to cyberattacks.
- Γ(C) is the fraction that quantifies how comprehensively the set C represents the range of possible scenarios

$$\Gamma(\mathcal{C}) = \frac{|\{\text{scenario covered by } \mathcal{C}\}|}{|\text{totalpossiblescenarios}\}|}$$

### Procedure

### 3. Augment/label the data

• The data needs to be pre-processed so that the model can use it train

A(x) = {x', x'', x''', ... }

• The augmentation of an image x contains some form of augmentation being rotation, scaling, noise represented by x', x'', x''', etc.





Dataset sample and dataset generation with Roboflow

## Procedure

#### Train the Model 4.

The data is put under the YOLOv8 Ο architecture to train and identify patterns/labels

 $V(s) = E6 \sim E[R(s, a) + \gamma V(s!)]$ 



#### 5. **Test the Model**



- Use base images to test accuracy and Ο consistency of model
- Compare with other models Ο



## Procedure (Demo)

### 6. Model Accuracy Verification with Robot Self-Driving Car

- o On-device computer vision algorithm
- o Real-time detection and analysis
- Adaptive learning and data collection





### Results

A comparison between 2 different computer vision models in the same dataset. YOLOv8 Version 6 shows the algorithms ability to accurately identify stop signs as well as classify cyber-attacks, while also not mistaking the blank stop sign and slow sign as a stop sign. YOLOv5 mu performs just as well when identifying stop-signs but misclassified when identifying cyber-attacks

|         | YOLOv8    | YOLOv8 Version 6 |              |  |
|---------|-----------|------------------|--------------|--|
|         | stop-sign |                  | cyber-attack |  |
| image_1 | 0.        | .95              | 0            |  |
| image_2 | 0.        | .65              | 0.82         |  |
| image_3 |           | 0                | 0.89         |  |
| image_4 | 0.        | .56              | 0            |  |

| YOLOV8<br>1.00 T | Version | 1 6       |              |         |
|------------------|---------|-----------|--------------|---------|
| 0.75             | 0.95    | 0.82      | 0.89         |         |
| 0.50             |         | 0.65      |              | 0.56    |
| 0.25             |         |           |              |         |
| 0.00             | 0       |           | 0            | 0       |
|                  | image_1 | image_2   | image_3      | imafe_4 |
|                  |         | stop-sign | cyber-attack |         |

|         | YOLOv5mu COCO pre-trained |              |  |
|---------|---------------------------|--------------|--|
|         | stop-sign                 | cyber-attack |  |
| image_1 | 0.942                     | 0            |  |
| image_2 | 0.912                     | 0            |  |
| image_3 | 0                         | 0.936        |  |
| image_4 | 0                         | 0.914        |  |



## Results

| image   | stop sign average | cyber attack average |
|---------|-------------------|----------------------|
| image_1 | 0.857125          | 0.0375               |
| image_2 | 0.316125          | 0.61075              |
| image_3 | 0                 | 0.838875             |
| image_4 | 0.209875          | 0.284                |

The average in accuracy of every model when classifying stop signs and cyber attacks

- Image 1 is normally accurately detected as a stop sign but in a few poor models is not
- Image 2, on average, can be accurately detected as not being a stop sign or a cyber attack
- Image 3 has a lower consistency than image 1 but normally is accurately detected as a cyber attack
- Image 4, on average, does better than image 2 on realizing the image is neither a stop sign or a cyber attack

## Results

## (YOLOv8 Version 6 - Roboflow)

- Mean Average Precision = average precision across multiple levels of confidence thresholds
  - i. Provides a single value that summarizes the overall performance of a model
  - ii. Performance increases as more epochs
- $\circ \quad \text{Box Loss}$ 
  - A component of the total loss that penalizes the model for errors in predicting the coordinates of bounding boxes
- $\circ \quad \text{Class Loss}$ 
  - Another component of the total loss that indicates performance on predicting class
- Object Loss
  - Another component that penalizes the model for failing to detect and classify objects present in the grid cell
- More epochs -> better results



### Confusion Matrix (YOLOv8)



**Confusion Matrix YOLOv8** 

### Results (YOLOv8s - Ultralytics)



- mAP50(B) = Mean Average Precision at 50 IoU for Boxes
  - i. 50 IoU = threshold used to determine whether a predicted bounding box is considered a correct detection (if it is above 50% it is a correct detection)
  - ii. (B) = bounding boxes
- mAP50-95(B) = same as above except at a higher predicted bounding box threshold
- precision(B) = accuracy of the predicted bounding box
- recall(B) = ration of true positive predictions to the total number of actual positives (how well the model captures all relevant objects in the dataset)

### Results (YOLOv8 VS YOLOv5)



Comparison with Yolo V5 and Yolo V8 in Patch Training

### Social Impact: The Flywheel Effect



### Conclusion

- Various methodologies employed to address challenges of cyber attacks on autonomous vehicle sensors.
- Definition and classification of cyberattacks crucial in shaping diverse training sets for AI models.
- Datasets ranged from a few dozen to over 46,000 images, pivotal in training AI models.
- Version 6 dataset demonstrated remarkable ability to recognize normal and manipulated traffic signs with up to 90% accuracy.
- Selection and optimization of YOLOv8 model from Roboflow critical for superior performance in recognizing and classifying stop signs accurately.
- Project's uniqueness lies in its focus on recognizing cyber attacks on traffic signs in autonomous vehicle domain.
- Sets foundation for protective countermeasures in Al-assisted society.
- Represents significant advancement in Trustworthy AI for autonomous vehicles.
- Highlights potential of advanced computer vision models and comprehensive datasets in enhancing safety and reliability of autonomous vehicle systems.
- Provides insights for further advancements in protecting autonomous vehicles from evolving cyber threats.

## References

- 1. Zhang, J., Lou, Y., Wang, J., Wu, K., Lu, K., & Jia, X. "Evaluating Adversarial Attacks on Driving Safety in Vision-Based Autonomous Vehicles." IEEE Internet of Things Journal. (2021).
- 2. D, D. (2023, June 19). Self-driving car accident statistics for 2023. Dordulian Law Group. https://www.dlawgroup.com/self-driving-car-accident-statistics-2023/
- 3. Self-driving car statistics. NST Law. (2023, June 8). https://www.nstlaw.com/autonomous-vehicle-statistics/
- 4. Giordani, J. (2022, April 21). Council post: Cyberattacks on vehicles pose a threat to drivers and manufacturers. Forbes. https://www.forbes.com/sites/forbestechcouncil/2021/12/10/cyberattacks-on-vehicles-pose-a-threat-to-drivers-and-manufacturers/?sh=7e88bf954620
- 5. Eliot, L. (2020, December 28). Largest ever Cyber Hack provides vital lessons for self-driving cars. Forbes. https://www.forbes.com/sites/lanceeliot/2021/12/29/largest-ever-cyber-hack-provides-vital-lessons-for-self-driving-cars/
- 6. 2024 must-know cyber attack statistics and Trends. Embroker. (2024b, January 4). https://www.embroker.com/blog/cyber-attack-statistics/
- 7. Richter, F. (2019, May 3). Infographic: Self-driving cars still cause for concern for pedestrains. Statista Daily Data. https://www.statista.com/chart/17881/self-driving-car-safety/
- 8. Kehtarnavaz, N., Griswold, N.C. & Kang, D.S. Stop-sign recognition based on color/shape processing. Machine Vis. Apps. 6, 206–208 (1993). https://doi.org/10.1007/BF01212298
- 9. T. P. Cao and G. Deng, "Real-Time Vision-Based Stop Sign Detection System on FPGA," 2008 Digital Image Computing: Techniques and Applications, Canberra, ACT, Australia, 2008, pp. 465-471, doi: 10.1109/DICTA.2008.37.
- 10. Wenpeng Wang, Yuxuan Su, and Ming Cheng "Real-time stop sign detection and distance estimation using a single camera", Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017), 106962A (13 April 2018); https://doi.org/10.1117/12.2309793