
Why Kafka ?

©Instaclustr Pty Limited, 2020

Kafka Motivation

1https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin

©Instaclustr Pty Limited, 2020

Kafka at Linkedin

1https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin

©Instaclustr Pty Limited, 2020

• 1400 brokers

• 1.4 trillion messages/day

• AVRO encoded records

• Multiple uses:

o Message queue/data bus

o Database replication

o Metrics

o Logging

o Web app tracking data

o Real-time Aggregation

1https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin

Kafka at Linkedin

©Instaclustr Pty Limited, 2020

©Instaclustr Pty Limited, 2020

Microservices Advantages
• Fast value delivery

o Fixes
o New features
o Experiments
o Increased confidence

• Language independent

• Fault isolation

• Pair well with containers

• Scalability

• Flexibility

©Instaclustr Pty Limited, 2020

Event Driven Architecture

Microservice
Ordering

Microservice
Billing

Microservice
Inventory

Microservice
Shipping

Event Streams PlatformKafka

Microservice
Front end User Interface

©Instaclustr Pty Limited, 2020

What Is Kafka?

©Instaclustr Pty Limited, 2020

Kafka Fundamentals
• Records/Messages → have a key, value, and timestamp

• Topic → a stream of records (“/orders”, “/user-signups”), feed name

o Log → topic storage on disk

o Partition → topics are divided into a fixed number of partitions, amongst which the records are divided.

• Producer → produces a stream of records

• Consumer → consumes a stream of records

• Broker → Kafka server that runs in a Cluster

• Cluster: A group of Brokers. This is also called a Kafka Cluster

• ZooKeeper: Coordinates brokers within the cluster.
©Instaclustr Pty Limited, 2020

Kafka Components: Producers, Consumers, Topics, etc

Kafka Cluster
Topic

Partition

Producer Producer Producer

ConsumerConsumerConsumer

Partition

Partition

Topic

Partition

Partition

Partition

Topic

Partition

Partition

Partition

Kafka Messages
• The basic unit of data in Kafka is a message also known as record

• A message is a key-value pair

o All data is stored in Kafka as byte arrays

o Producer provides serializers to convert the
key and value to byte arrays

o Key and value can be any data type

©Instaclustr Pty Limited, 2020

Data Order in Kafka

What Kafka Guarantees

Messages sent by a producer to a particular topic partition will be appended in the
order they are sent.

A consumer instance sees records in the order they are stored in the log.

For a topic with replication factor N, we will tolerate up to N-1 server failures
without losing any records committed to the log.

What Kafka Guarantees

What Kafka Guarantees

Anatomy of a Topic

What happens if we
send data to many

partitions?

10 Partitions

./kafka-topics.sh --create \
 --zookeeper localhost:2181/kafka \
 --replication-factor 1 --partitions 10 \
 --topic my-topic

Send Some Data

./kafka-console-producer.sh \
 --broker-list localhost:9092 \
 --topic my-topic

> 1
> 2
> 3
> 4
> 5
> 6
> 7
> 8
> 9
> 10

Receive the Same Data

./kafka-console-consumer.sh \
 --bootstrap-server localhost:9092 \
 --topic my-topic \
 --from-beginning

> 2
> 5
> 9
> 3
> 4
> 7
> 6
> 10
> 8
> 1

How did this happen?

Topic

Consumer

P1
>1

P1
>5

P1
>8

P1
>10

P1
>4

P1
>2

P1
>7

P1
>9

P1
>3

P1
>6

Data Sent
Round Robin

What happens if we
send data to one

partition?

1 Partition

./kafka-topics.sh --create \
 --zookeeper localhost:2181/kafka \
 --replication-factor 1 --partitions 1 \
 --topic my-topic

Send Some Data

./kafka-console-producer.sh \
 --broker-list localhost:9092 \
 --topic my-topic

> 1
> 2
> 3
> 4
> 5
> 6
> 7
> 8
> 9
> 10

Receive the Same Data

./kafka-console-consumer.sh \
 --bootstrap-server localhost:9092 \
 --topic my-topic \
 --from-beginning

> 1
> 2
> 3
> 4
> 5
> 6
> 7
> 8
> 9
> 10

How did this happen?

Topic

P1

>1
>2
>3
>4
>5
>6
>7
>8
>9
>10

Consumer
Data Sent

Round Robin
to all partitions

What happens if we
introduce keying?

Kafka messages with a key

All Key messages with a Key will go to the same partition

Suppose we want to send 4 messages to a Kafka topic
with 2 partitions

Orders Topic

Partition 1 Partition 2

Key: Costco
Value: 400

Key: Walmart
Value: 400

Key: Target
Value: 400

Key: BestBuy
Value: 400

Keys are hashed and distributed across the cluster

Orders Topic

Partition 1 Partition 2

Key: Costco
Value: 400

Key: Walmart
Value: 400

Key: Target
Value: 400

Key: BestBuy
Value: 400

Suppose we want to send 4 MORE messages to a
Kafka topic with 2 partitions

Orders Topic

Partition 1 Partition 2

Key: Costco
Value: 400

Key: Walmart
Value: 400

Key: Target
Value: 400

Key: BestBuy
Value: 400

Key: Costco
Value: 100

Key: Walmart
Value: 200

Key: Target
Value: 100

Key: BestBuy
Value: 200

Messages are sent to the same partition using the existing key

Orders Topic

Partition 1 Partition 2

Key: Costco
Value: 400

Key: Walmart
Value: 400

Key: Costco
Value: 100

Key: Walmart
Value: 200

Key: Target
Value: 400

Key: BestBuy
Value: 400

Key: Target
Value: 100

Key: BestBuy
Value: 200

Suppose we add more partitions to the cluster

Partition 1 Partition 3

Key: Costco
Value: 400

Key: Walmart
Value: 400

Key: Costco
Value: 100

Key: Walmart
Value: 200

Key: Target
Value: 400

Key: BestBuy
Value: 400

Key: Target
Value: 100

Key: BestBuy
Value: 200

Partition 2

Orders Topic

Suppose we then decide to rebalance the partitions

Partition 1 Partition 3

Key: Costco
Value: 400

Key: Walmart
Value: 400

Key: Costco
Value: 100

Key: Walmart
Value: 200

Key: Target
Value: 400

Key: BestBuy
Value: 400

Key: Target
Value: 100

Key: BestBuy
Value: 200

Partition 2

Orders Topic

Suppose we want to send 4 MORE messages to a
kafka topic with 3 partitions

Partition 1 Partition 3Partition 2

Orders Topic

Key: Costco
Value: 500

Key: Walmart
Value: 500

Key: Target
Value: 500

Key: BestBuy
Value: 500

Suppose we then decide to rebalance the partitions again

Partition 1 Partition 3

Key: Costco
Value: 400

Key: Costco
Value: 100

Key: Walmart
Value: 200

Key: Target
Value: 400

Key: BestBuy
Value: 400

Key: Target
Value: 100

Key: BestBuy
Value: 200

Partition 2

Orders Topic

Key: Target
Value: 500

Key: BestBuy
Value: 500

Key: Costco
Value: 500

Key: Walmart
Value: 500

Key: Walmart
Value: 400 Key: Target

Value: 100

The result looks like Balanced Partitions

Orders Topic

Partition 1 Partition 2 Partition 3

Key: Costco
Value: 400

Key: Walmart
Value: 400

Key: Target
Value: 400

Key: BestBuy
Value: 400

Key: Costco
Value: 100

Key: Walmart
Value: 200

Key: Target
Value: 100

Key: BestBuy
Value: 200

Partition 4

Key: Costco
Value: 500

Key: Walmart
Value: 500

Key: Target
Value: 500

Key: BestBuy
Value: 500

How do make sure
the data is always

sent in order?

Kafka Producer Overview

max.in.flight.requests.per.connection

Setting the retries parameter to nonzero and the max.in.flight.requests.per.connection
to more than one means that it is possible that the broker will fail to write the first batch of
messages, succeed to write the second (which was already in-flight), and then retry the
first batch and succeed, thereby reversing the order.

max.in.flight.requests.per.connection

Usually, setting the number of retries to zero is not an option in a reliable system, so if
guaranteeing order is critical, we recommend setting in.flight.requests.per.session = 1
to make sure that while a batch of messages is retrying, additional messages will not be
sent (because this has the potential to reverse the correct order).

This will severely limit the throughput of the producer, so only use this when order is
important.

Kafka Delivery Guarantees

Guarantees that a
particular message will
always be delivered.

At Least Once

Guarantees that a
particular message will
always be delivered.

Exactly Once

Guarantees that all
messages will always be
delivered exactly once.

At Once

Exactly Once Delivery

Idempotent
Producer

Transactions
Across

Partitions

Transactional
Consumer

Kafka Transaction Example Workflow

Exactly Once Semantics Diagram

Diagram Originally produced Here

https://cwiki.apache.org/confluence/display/KAFKA/KIP-447%3A+Producer+scalability+for+exactly+once+semantics

info@instaclustr.com

