
 Creating a Reproducible Build
 System for Docker Images

Adam Miller
PRESENTED BY:

Fedora Engineering, Red Hat

CC BY-SA 2.0

(Or any OCI Compatible Runtime)

Today's Topics

· Define “containers” in the context of Linux systems
· Brief History/Background
· Quick Tour of Linux Container Ecosystem

· Docker
· Docker Build (Dockerfile)
· Release Engineering
· Docker Layered Image Build Service

· OpenShift
· OpenShift Build Service (OSBS)
· Koji-containerbuild

· Fedora’s Docker Layered Image Build Service
· Q&A

Containers

What are containers?

· Operating-system-level Virtualization
· We (the greater Linux community) like to call them “containers”

· OK, so what is Operating-system-level Virtualization?
· The multitenant isolation of multiple user space instances or namespaces.

Traditional OS Containers

HARDWARE

HOST OS

HARDWARE
HOST OS

CONTAINER

LIBS A

APP A

LIBS A LIBS B LIBS LIBS

APP A APP B
CONTAINER

LIBS

APP B

Containers are not new

· The concept of containers is not new
· chroot was the original “container”, introduced in 1982

· Unsophisticated in many ways, lacking the following:
· COW
· Quotas
· I/O rate limiting
· cpu/memory constraint
· Network Isolation

· Brief (not exhaustive) history of sophisticated UNIX-like container technology:
· 2000 - FreeBSD jails
· 2001 – Linux Vserver
· 2004 – Solaris Zones
· 2005 - OpenVZ
· 2008 – LXC

· This is where things start to get interesting

Modern Linux Container is Born

· 2008 - IBM releases LinuX Containers (LXC)
· Userspace tools to effectively wrap a chroot in kernel namespacing and cgroups
· Provided sophisticated features the chroot lacked

· 2011 – systemd nspawn containers
· run a command or OS in a light-weight namespace container. Like chroot, but virtualizes

the file system hierarchy, process tree, various IPC subsystems, host and domain name.

· 2013 – DotCloud releases Docker (https://github.com/docker/docker)
· Originally used LXC as the backend, introduces the Docker daemon, layered images,

standard toolset for building images and a distribution method (docker registry). Later
makes backend driver pluggable and replaces LXC with libcontainer as default. Then later
replaces backend with runc.

Modern Linux Container

· 2014 – CoreOS releases rkt (https://github.com/coreos/rkt)
· rkt is an implementation of App Container(appc) specification and App Container

Image(ACI) specification, built on top of systemd-nspawn.
· ACI and appc aimed to be a cross-container specification to be a common ground

between container implementations.

· 2015 – Open Container Initiative (OCI - http://opencontainers.org/)
· “The Open Container Initiative is a lightweight, open governance structure, to be formed

under the auspices of the Linux Foundation, for the express purpose of creating open
industry standards around container formats and runtime.” - http://opencontainers.org/

· Initiative Sponsors: Amazon Web Services, Anchore, Apcera, AT&T, Cisco, ContainerShip,
CoreOS, DellEMC, Docker, EasyStack, Facebook, Fujitsu, Goldman Sachs, Google, HPE,
Huawei, IBM, Infoblox, Intel, Joyent, Kontena, Mesosphere, Microsoft, Oracle, Pivotal,
Polyverse, Portworx, Rancher,
Red Hat, Replicated, resin.io, Robin, SUSE, Sysdig, Twistlock, Univa, Verizon Labs,
Virtuozzo, WeaveWorks, Wercker, Western Digital

Modern Linux Container

· 2015 - Cloud Native Computing Foundation (CNCF - https://cncf.io/)
· The Foundation’s mission is to create and drive the adoption of a new computing

paradigm that is optimized for modern distributed systems environments capable of
scaling to tens of thousands of self healing multi-tenant nodes.

Modern Linux Container

· 2015 – runc (http://runc.io/)
· Stand-alone command line tool for spawning containers as per the OCP specification.
· Containers are child processes of runC, no system daemon, can be embedded.
· Shares technology lineage with Docker (libcontainer and others).
· Compatible with Docker images.
· Docker Engine v1.11+

· 2016 – containerd (http://containerd.tools/)
· Containerd is a daemon with an API and a command line client, to manage containers on

one machine. It uses runC to run containers according to the OCI specification.
· Docker Engine v1.11+

Docker

Docker

· Docker Engine (daemon) is the single point of entry, has language bindings for other
clients and tooling. (Image verification)

· Containers are instances of images.
· Images are built in a standard way using Dockerfile
· SELinux support upstream in Docker.
· Pluggable backends for isolation mechanism, storage, networking, etc.

Base vs Layered Images

Fedora 24 Host

HARDWARE OR VM

Fedora 24
APP

CONTAINER
Fedora 24

BASE IMAGE

Fedora 24
APP

Fedora 24
APP

Fedora 25 Host

HARDWARE OR VIRTUAL MACHINE

Fedora 24
APP LAYER

Fedora 24
App LIBS

APP

Dockerfile

FROM fedora
MAINTAINER http://fedoraproject.org/wiki/Cloud

RUN dnf -y update && dnf clean all
RUN dnf -y install httpd && dnf clean all
RUN echo "HTTPD" >> /var/www/html/index.html

EXPOSE 80

Simple startup script
ADD run-httpd.sh /run-httpd.sh
RUN chmod -v +x /run-httpd.sh

CMD ["/run-httpd.sh"]

Docker Build

$ docker build -t fedora-httpd .
Sending build context to Docker daemon 24.06 kB
Step 1 : FROM docker.io/fedora
 ---> f9873d530588
Step 2 : MAINTAINER http://fedoraproject.org/wiki/Cloud
 ---> Running in d7c01855128e
 ---> 819fb0ed13b0
Removing intermediate container d7c01855128e
Step 3 : LABEL RUN 'docker run -d -p 80:80 $IMAGE'
 ---> Running in 4288ff446166
 ---> 5f2b85cdbd73
Removing intermediate container 4288ff446166
Step 4 : RUN dnf -y update && dnf -y install httpd && dnf clean all
 ---> Running in df63942c3979
… OUTPUT OMITTED FOR BREVITY …
Successfully built 63bc543a1868

Release
Engineering

Release Engineering

· What is Release Engineering?
· Making a software production pipeline that is Reproducible, Auditable, Definable, and

Deliverable
· It should also be able to be automated

· Definition (or the closest there really is)

“Release engineering is the difference between
manufacturing software in small teams or startups and
manufacturing software in an industrial way that is
repeatable, gives predictable results, and scales well.
These industrial style practices not only contribute to the
growth of a company but also are key factors in enabling
growth.”

- Boris Debic of Google Inc

Release Engineering

OpenShift

OpenShift

SERVICE CATALOG
(LANGUAGE RUNTIMES, MIDDLEWARE, DATABASES, …)

SELF-SERVICE

APPLICATION LIFECYCLE MANAGEMENT
(CI / CD)

BUILD AUTOMATION DEPLOYMENT AUTOMATION

CONTAINER CONTAINERCONTAINER CONTAINER CONTAINER

NETWORKIN
G

SECURITYSTORAGE REGISTRY
LOGS &
METRICS

CONTAINER ORCHESTRATION & CLUSTER MANAGEMENT
(KUBERNETES)

Fedora / CentOS / Red Hat Enterprise Linux

CONTAINER RUNTIME & PACKAGING
(DOCKER)

ATOMIC HOST

INFRASTRUCTURE AUTOMATION & COCKPIT

OpenShift/Kubernetes Overview

Master

Node
Scheduler

Pod

Container

Container

Container

Pod

Container

Container

Container

Pod
.

.

.

Node

Pod

Container

Container

Container

Pod

Container

Container

Container

Pod
.

.

.

Client

REST API

Docker Layered
Image Build

Service

Build System

osbs cli OSBS

OpenShift Origin

atomic-reactor

osbs-client API

Registry

Candidate Images

Stable + Updates

…

Users

Server
Deployments

Content Stream
RPMs

pypi

rubygem

npm

maven

...

OSBS

· OpenShift Build Service
· Takes advantage of OpenShift’s built in Build primitive with a “Custom Strategy” and

BuildConfig
· This defines what can be the inputs to a build

· Relies on OpenShift for scheduling of build tasks throughout the cluster
· Presents this defined component to developers/builders as CLI and Python API
· osbs enforces that the inputs come from auditable sources.

· Git repo for source Dockerfile, git commits and builds centrally logged
· BuildRoot - limited docker runtime

· Firewall constrained docker bridge interface
· Unprivileged container runtime with SELinux Enforcing
· Inputs are sanitized before reaching to build phase

· Unknown or unvetted sources are disallowed by the system
· Uses OpenShift ImageStreams as input sources to BuildRoot
· Utilizes OpenShift Triggers to spawn rebuild actions based on parent image changes

· How often are your images rebuilt?

OSBS - Continued

· atomic-reactor
· Single-pass Docker build tool used inside constrained buildroot in OSBS
· Automates tasks via plugins, such as:

· pushing images to a registry when successfully built
· injecting yum/dnf repositories inside Dockerfile (change source of your packages for input

sanitization/gating)
· change base image (FROM) in your Dockerfile to
· match that of the registry available inside the isolated buildroot, run simple
· tests after image is built

· Gating of updates
· Automated tests can be tied to the output of OSBS
· RelEng is able to then "promote" images to a "production" or "stable"

registry/tag/repository

Fedora’s Implementation
Fedora Layered
Image
Maintainers

DistGit

Docs

Dockerfile

Service Scripts

Tests

Koji

…

RPM Builds

Container-build

ISO/Cloud Images

fedpkg container-build

OSBS

OpenShift Origin

atomic-reactor

osbs-client API

Candidate Registry

Candidate Images

Users

Content Stream
RPMs

pypi

rubygem

npm

maven

...

Registry

Stable + Updates

Fedora’s Implementation

· DistGit (“Distro Git”)
· Each Branch = Fedora Release
· master branch is Devel (codename “Rawhide”)

· fedpkg
· Fedora Package Maintainer helper tool
· Manages distgit branches
· Initiate builds (local and remote, mock integration)
· Much more …

· Koji
· Fedora’s authoritative build system
· Everything for Fedora is built here or it’s build is integrated here

· Live USB images, DVD ISOs, IaaS Cloud Images, RPMs, Docker
· This defines what can be the inputs to a build

· Koji-containerbuild
· Plugin to orchestrate builds between Koji and OSBS

· Registry
· Upload/download destination, point of distribution

Release Engineering Revisited

· What is Release Engineering?
· Making a software production pipeline that is Reproducible, Auditable, Definable, and

Deliverable
· It should also be able to be automated

· Reproducible
· Given the same set of inputs we can expect the same set of outputs

· We can even limit the specific versions of every artifact in the container
· Auditable

· OSBS maintains a manifest of its inputs and outputs
· All actions are logged centrally

· Fedora’s implementation also involves a message bus and archives all activity in a database
· Definable

· OSBS defines an OpenShfit Build, if definition violated the system will reject the build
· Deliverable

· Gating for promoting content among Docker Image Registries/Tags/Repositories

Questions?

maxamillion@fedoraproject.org
@TheMaxamillion

CONTACT:

CC BY-SA 2.0

References
· https://en.wikipedia.org/wiki/Operating-system-level_virtualization
· https://coreos.com/blog/rocket
· https://coreos.com/blog/appc-gains-new-support
· https://www.docker.com
· https://github.com/docker/distribution
· http://www.redhat.com/en/insights/containers
· http://www.projectatomic.io
· http://www.openshift.org
· https://www.openshift.com
· http://www.redhat.com/en/about/blog/red-hat-and-google-collaborate-kubernetes-manage-docker-containers-scale
· http://rhelblog.redhat.com/2014/04/15/rhel-7-rc-and-atomic-host
· http://opencontainers.org
· http://runc.io
· https://www.cncf.io/
· http://queue.acm.org/detail.cfm?id=2884038
· http://containerd.tools
· https://drive.google.com/file/d/0B_Jl94nModqdSFVseUotQVB1Rnc/view?usp=sharing
· http://valleyproofs.debic.net/2009/03/behind-scenes-production-pushes.html
· https://github.com/release-engineering/koji-containerbuild
· https://github.com/projectatomic/atomic-reactor
· https://github.com/projectatomic/osbs-client
· https://pagure.io/koji
· https://fedorahosted.org/koji/wiki
· https://bugzilla.redhat.com/show_bug.cgi?id=1243736
· https://fedoraproject.org/wiki/Changes/Layered_Docker_Image_Build_Service
· https://fedoraproject.org/wiki/Container:Review_Process
· https://fedoraproject.org/wiki/Container:Guidelines
· https://opensource.com/business/16/7/creating-reproducible-build-system-docker-images

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

