Encrypted btrfs subvolumes:
new features

Sweet Tea Dorminy FACEBOOK Infrastructure



Intro: btrfs, status

Technical aspects: fscrypt, motivation,

extent-based encryption; status, learnings,
solutions

Future goals: more features from LUKS and
bcachefs

Practical usage: soon




Introduction to
btrfs



I n t rO t O e Not ajudgement on quality, just a

convenient alias for a particular set of
features.

a d Va n C e d L sﬁitE:z,r::bvolumes, snapshots,
filesystems

e Btrfs, XFS, Bcachefs




e Btrfs haslong wanted to have encryption, but
doesn’t want to give up checksumming or reflinking.

M Ot i Va t i O n : bt rfs e By having per-subvolume encryption, individual user

homedirs can have unique keys.




Technical

challenges for
btrfs



Kernel library providing a standard encryption
interface across filesystems using it.

Used on Android

Ext4, f2fs, ceph, ubifs as yet

One master key per directory tree

No mixing keys within one tree

Can delete files without their key

Only encrypts filenames and data (vs
LUKS/dm-crypt, which encrypts everything)

? Crypto either with crypto api or blk-crypto
fs C ry pt o o With blk-crypto, filesystem never sees
encrypted data
struct inode embeds struct fscrypt_inode_info,
storing on disk as struct fscrypt_context:
o Encryption is based on file + file offset
o Key either master key+nonce applied to
plaintext, or a derived key from master key +
nonce




Difficulties for
advanced
filesystems

No mixing keys within one tree

o Breaks nested subvolumes with different master
keys

Crypto either with crypto api or blk-crypto

o W.ith blk-crypto, filesystem never sees encrypted
data
m Unsafe to store checksums of plaintext

struct inode embeds struct fscrypt_inode_info,
storing on disk as struct fscrypt_context
o Encryptionis based oninode + file offset
m One piece of data can be reflinked into two
inodes at different offsets. How to make both
inodes decrypt it successfully? Awkward...




Extent-based
encryption

Still has a struct fscrypt_inode_info /
struct fscrypt_context for inodes.
struct fscrypt_extent_context per
extent
Encryption is based on extent +
extent offset

No issue reflinking an extent into two
inodes anymore
Stores key, so in theory every extent
can have a different key

Takes more metadata space usually




Current state



History

e Design1in Oct ‘21 by Omar Sandoval

Per-extent context contained nonce only
Encryption using master key directly only
Patches Jun-Oct ‘22

Risks of master key reuse for too much data
Crypto api only

Checksum encrypted data

e Design 2 in Nov ‘22 by me

O

O O O O

Per-extent context reusing ‘normal’
per-inode context struct

Patches Jan-Aug ‘23

Insufficiently elegant

Blk-crypto only

Checksummed unencrypted data



e Design 3in Sep ‘23 by Josef Bacik

o Per-extent context with nonce and key (must
match inode key for now)

o Encryption restricted to derived key from inode
context + extent nonce

o V5inflight

o Doesn’t support nested subvols with different
keys or full range of key options, but enough
information is in the context to do so

o Still needs review, hasn’t gotten into the kernel

Current state




Addresses
previous
difficulties

Still doesn’t allow changing keys within one tree

o Nested subvolumes still don’t work, but enough
info is stored to allow changing key between
inodes.

Extent-based only with blk-crypto

o Adds a callback to blk-crypto to allow

checksumming encrypted data
Encryption is based on inode + extent + extent
offset

o Addresses reflinking between inodes with the
same key, can be extended to allow reflinking
between inodes with different keys




Future goals



Bcachefs has

different
features

Doesn’t use fscrypt

Only one encryption key per filesystem
Everything is encrypted: no access to
anything, even for deletion, when the key
isn’t loaded

Authenticated encryption instead of
encryption + checksums of encrypted data
Less options for encryption algorithm



LUKS
(dm-crypt +

dm-integrity)
has different
features

Only one encryption key per filesystem

Everything is encrypted: no access to

anything, even for deletion, when the key

isn’t loaded

Authenticated encryption instead of

encryption + checksums of encrypted data

Encryption key changes

o Useful for repudiation or changing to a
newer encryption algorithm

Encrypts everything



e There’s a Fedora proposal to use btrfs
encryption one day
o initial unencrypted or encrypted image
installed on disk by OEM
Company or user sets new key on /,

Key C h a n ge installs own packages, sets up homedir

template

o o o User sets new key for homedir
m Otlvatl O n Meta once and may again want to install
an unencrypted package in subvolume, run
in container with per-subvolume key for
anything written by package.
Also useful for companies that require
changing passwords every so often.




How will it be
usable?



e Obviously any new feature may have bugs,
but early adopters’ testing will be
invaluable

e Uses the same kernel keyring facility as
LUKS
o systemd-cryptsetup-generator already

knows how to ask for LUKS password

it ,S i n t h e and send it to the kernel, just need to
use it for encrypted btrfs.
kernel

Almost ready
TO use once

e Systemd-homedir hopefully will one day
be able to have a per-use key for a
per-user subvolume, mounted on login.




FACEBOOK Infrastructure



