
Getting Around to It: Deferred Work in Linux Kernel

Alison Chaiken
alison@she-devel.com

https://github.com/chaiken/SCALE2024

These slides: http://she-devel.com/ChaikenSCALE2024.pdf

mailto:alison@she-devel.com
https://github.com/chaiken

Categories of Deferred Work

● Tasks delayed due to resource unavailability

● Tasks performed by callbacks in response to an event

“Upload tax
documents!”

Empty litterbox

Do tax stuff.

http://tinyu
rl.co

m
/4h

d
bcn

h
k

Performers of Deferred Work

● Softirqs (bottom halves)

● Kworkers (workqueues)

● Waitqueues

What Happens when Task Deferral Goes Wrong

● Tasks are deferred too long:

– RCU stalls.

– Heavy network traffic unacceptably delays applications.

● Deferred work disrupts latency-sensitive applications:

– kworkers or ksoftirqd hog cores.

– kworker watchdog timer fires.

softirqs and workqueues have been inscrutable
http://tinyu

rl.co
m

/36
w

h
4

ssn

softirqs

Softirqs types in order of priority
http://tinyurl.com

/yrhsk9d7

HI: DMA, PCI

TIMER

NET_TX and NET_RX

BLOCK: assess status of requests

IRQ_POLL: NAPI for storage

TASKLET: crypto, drivers

SCHED: rebalance scheduling domains

HRTIMER

RCU: read-copy-update memory mgmt

Softirqs: as popular as death

“Softirqs are often a pain to deal with”

“People fight hard through this big softirq lock . . .

“Softirq processing . . . prevents the scheduler to control it . . .
heuristics people have added to ‘control’ this is disgusting”

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/kernel-hacking/hacking.rst?h=v6.6.2
https://lwn.net/Articles/939935/
https://lwn.net/Articles/940497/

The “disgusting” heuristics

/*
 * These limits have been established via experimentation.
 * The two things to balance is latency against fairness -
 * we want to handle softirqs as soon as possible, but they
 * should not be able to lock up the box.
 */

#define MAX_SOFTIRQ_TIME msecs_to_jiffies(2)
#define MAX_SOFTIRQ_RESTART 10

softirq is
already
running on
this cpu?

hard
IRQ

wait for
ksoftirqd

__do_softirq();

Problem: softirqs do not run concurrently

bcc’s stackcount can make softirqs visible (demo)

$ sudo /usr/sbin/stackcount-bpfcc __do_softirq -D 10

Tracing 1 functions for "__do_softirq"... Hit Ctrl-C to end.
 __do_softirq
 do_softirq.part.0
 __local_bh_enable_ip
 iwl_pcie_irq_rx_msix_handler
 irq_thread_fn
 irq_thread
 kthread
 ret_from_fork
 ret_from_fork_asm
 109

 __do_softirq
 __irq_exit_rcu
 common_interrupt
 asm_common_interrupt
 cpuidle_enter_state
 cpuidle_enter
 do_idle
 cpu_startup_entry
 start_secondary
 secondary_startup_64_no_verify
 204

https://github.com/iovisor/bcc/blob/master/tools/stackcount.py

S. Siewior, Linux Plumbers 2023 slides, video, LKML

RT Problem: local_bh_disable() defeats PI

Here the BLOCK softirq should run but must wait.

The NET_RX softirq is done, so now run BLOCK softirq.

SATA hardirq

https://lpc.events/event/17/contributions/1577/attachments/1311/2628/Plumbers_2023_Siewior.pdf
https://youtu.be/J5Hm6PrJWI4?t=8173
https://lore.kernel.org/netdev/74feb818-7109-cb1e-8eec-a037c17a2871@iogearbox.net/T/#m4b873a85e591baaff467c4a07f3d8ee8ddd26824

Timeline: incrementally improving softirqs

v3.8

ktimersoftd
(RT only)

v4.1-rtv5.0-rtv4.1-rtv3.12.54-rt74

ktimersd
(RT only)

v4.1-rtv5.16-rt

proposed, v6.5

RCU_NOCB_CPU

TIMER_SOFTINTERRUPTIBLE

threaded
NAPI

v5.12

local_lock_nested_bh()

tasklets --> wq

v6.9

https://lore.kernel.org/all/1351655191-2648-1-git-send-email-paulmck@linux.vnet.ibm.com/
https://lore.kernel.org/linux-rt-users/CAFzL-7tzwnBEnt_q2f0BPSAO3To_Zaxt4bLtfzKVOiyJTua45g@mail.gmail.com/
https://lore.kernel.org/linux-rt-users/20160120163407.GB2741@linutronix.de/
https://lore.kernel.org/linux-rt-users/20211201173316.rm6o67qapqsx2n47@linutronix.de/
https://lwn.net/Articles/939973/
https://lwn.net/Articles/833840/
https://lpc.events/event/17/contributions/1577/
https://lwn.net/Articles/960041/

Progress with Softirqs is Slow
cr

ed
it

E
st

e
l@

de
vi

a
nt

a
rt

● ~250 call-sites for
local_bh_disable(), the “Big
Softirq Lock.”

● RCU, network and timers (RT)
softirqs are runnable in
kthreads, but with context-
switch penalty.

● Improvements to tasklets
coming in 6.9.

http://tinyurl.com/3dcc42r4
https://lore.kernel.org/r/1688011324-42406-1-git-send-email-CruzZhao@linux.alibaba.com

workqueues

kworker/0:0
kworker/0:1

worker_pool on core 0

Bound (per-CPU) workqueues

kworker/1:1H
kworker/1:3H

high-prio worker_pool on core 1

work_function1

work_function1

high-priority bound wqs

work_function3

work_function0

kworker attributes match pools.
A given pool will service diverse workqueues.

work_function2

work_function0

work_function2

kworker naming

bound cpu

kworker/6:3H

kworker id High-prio?

unbound pool id

 kworker/u114:3

 kworker id

Created: at boot
Per-CPU: yes
Fixed # pools: yes
Fixed workers/pool: no
Can migrate: no

Persistent, CPU-intensive
Created: at boot and dynamic
Per-CPU: no
Fixed # pools: no
Fixed workers/pool: no
Can migrate: yes

BUG: workqueue lockup - pool cpus=1 node=0 flags=0x0 nice=0
stuck for 207s!

pool 112: cpus=0-55 flags=0x4 nice=0 hung=0s workers=4 idle:
44535

workqueue ixgbe: flags=0xe000a
 pwq 112: cpus=0-55 flags=0x4 nice=0 active=1/1 refcnt=4
 in-flight: 18005:ixgbe_service_task
 workqueue ext4-rsv-conversion: flags=0x2000a
 pwq 112: cpus=0-55 flags=0x4 nice=0 active=1/1 refcnt=14
 in-flight: 53379:ext4_end_io_rsv_work
 inactive: ext4_end_io_rsv_work, ext4_end_io_rsv_work
 workqueue my-deadlocking-driver: flags=0xa000a
 pwq 112: cpus=0-55 flags=0x4 nice=0 active=1/1 refcnt=4
 in-flight: 39998:deadlocking_work_fn

RT 5.15 kernel

Kernel Thread Pinnability (demo, Github)

$ classify_process_affinity | grep -e ^k

kworker/6:1H-events_highpri: unpinnable
kworker/6:2-mm_percpu_wq: unpinnable
kworker/7:0H-events_highpri: unpinnable
kworker/7:2-mm_percpu_wq: unpinnable
kworker/u16:0-events_unbound: unpinnable
kworker/u17:0-rb_allocator: unpinnable

$ cat /proc/93/stat
93 (irq/27-aerdrv) S 2 0 0 0 -1 2129984 0 0 0 0 0 0 0 0 -51 0 1 0 88 0 0
18446744073709551615 0 0 0 0 0 0 0 2147483647 0 0 0 0 17 5 50 1 0 0 0
0 0 0 0 0

kcompactd0: pinnable.
kdevtmpfs: pinnable.
khugepaged: pinnable.
khungtaskd: pinnable.
kintegrityd: unpinnable

How it works struct task->flags & PF_NO_SETAFFINITY

https://github.com/chaiken/util-scripts.git
https://github.com/chaiken/util-scripts

https://tinyurl.com
/252h7ctt

ht
tp

s:
//t

in
yu

rl.
co

m
/m

tv
uc

y4
k

Workqueues Kworkers

Configure workqueues rather than kworkers

taskset and chrt manage the wrong thing.

how to set workqueue affinity (demo)
[alison@bitscream SCALE2024 (main)]$ sudo ./workqueue-affinity_demo.sh

0. Demo will not work before v6.7.
Kernel version 6.7-amd64

1. Workqueues which are configurable from sysfs:
$ ls /sys/devices/virtual/workqueue
blkcg_punt_bio nvme-delete-wq nvme-wq raid5wq scsi_tmf_1 scsi_tmf_3 scsi_tmf_5 scsi_tmf_7 writeback
cpumask nvme-reset-wq power scsi_tmf_0 scsi_tmf_2 scsi_tmf_4 scsi_tmf_6 uevent

2. Consider tunable parameters for nvme-delete-wq:
$ ls /sys/devices/virtual/nvme-delete-wq
affinity_scope affinity_strict cpumask max_active nice per_cpu power subsystem uevent

4. Default nice value of unbound nvme-delete-wq workqueue:
$ cat /sys/devices/virtual/workqueue/nvme-delete-wq/nice
0

5. Determine in which workqueue pools nvme-delete-wq runs by default
Workqueue CPU -> pool
=====================
[workqueue \ type CPU 0 1 2 3 4 5 6 7 dfl]
$ drgn tools/workqueue/wq_dump.py | grep nvme-delete-wq
nvme-delete-wq unbound 66

6. Set nice to -4
$ echo -4 > /sys/devices/virtual/workqueue/nvme-delete-wq/nice

7. In which workqueue pools does nvme-delete-wq run NOW?
$ drgn tools/workqueue/wq_dump.py | grep nvme-delete-wq

Workqueue CPU -> pool
=====================
[workqueue \ type CPU 0 1 2 3 4 5 6 7 dfl]
nvme-delete-wq unbound 65

9. What are the properties of pool 65?
$ drgn tools/workqueue/wq_dump.py | grep 'pool[65]'
pool[65] ref= 33 nice= -4 idle/workers= 1/ 1 cpus=00000015 pod_cpus=00000015

8. What else runs in workqueue pool 65?
$ drgn tools/workqueue/wq_dump.py | grep 65
pool[65] ref= 33 nice= -4 idle/workers= 1/ 1 cpus=00000015 pod_cpus=00000015
nvme-delete-wq unbound 65

https://github.com/chaiken/SCALE2024/blob/main/workqueue-affinity_demo.sh

Configuration Applies to Work, not Executors

1. Workqueues appear in /sys/devices/virtual.

2. Workqueues have a “nice” value and cpu affinity.

3. Unbound workqueues can migrate, not kworkers.

Workqueue March of Progress

6.5
affinity scope;
automatic CPU_INTENSIVE;
wq_monitor.py
CPU_INTENSIVE_REPORT

6.6 (LTS)
wq_dump.py;
rescuers renamed

6.7
unbound use per-CPU

proposed, 6.9
replace tasklets;
system-wide max_active

6.8
isolcpus-aware
wqlat.py*

https://lore.kernel.org/lkml/20230519001709.2563-15-tj@kernel.org/
https://lore.kernel.org/lkml/20230418205159.724789-1-tj@kernel.org/T/
https://lore.kernel.org/lkml/20230418205159.724789-6-tj@kernel.org/
https://lore.kernel.org/lkml/20230510030752.542340-6-tj@kernel.org/
https://lore.kernel.org/lkml/20230519001709.2563-16-tj@kernel.org/
https://lore.kernel.org/all/20230807220637.3203739-1-atomlin@atomlin.com/
https://lore.kernel.org/all/20230519001709.2563-10-tj@kernel.org/
https://lore.kernel.org/all/20240130091300.2968534-4-tj@kernel.org/
https://lore.kernel.org/lkml/20240125170628.2017784-1-tj@kernel.org/
https://lore.kernel.org/lkml/20240229021414.508972-3-longman@redhat.com/
https://github.com/iovisor/bcc/blob/master/tools/wqlat.py

Conclusions

softirqs Can run in atomic context.

Heroic efforts.

Limited progress.

Limited observability.

workqueues
Run in process context.

Manage work, not kworkers!

Improved observability.

More configurable.

Improved performance.

Acknowledgements

Big thanks to Sarah Newman for her suggestions.

https://lkml.org/lkml/2014/3/16/176

References

“IRQs: the Hard, the Soft, the Threaded and the Preemptible,”
from 2016: video, slides

“Unblocking the softirq lock for PREEMPT_RT” by S. Siewior
from 2023: video (starts at 2:16), slides

bpftrace scripts and shell scripts to run them at Github

classify_process_affinity at Github

Comparison by Wei Wang of kthreads, workqueues and softirqs

LWN, of course!

https://www.youtube.com/watch?v=-pehAzaP1eg
http://she-devel.com/Chaiken_ELCE2016.pdf
https://youtu.be/J5Hm6PrJWI4?t=8173
https://lpc.events/event/17/contributions/1577/attachments/1311/2628/Plumbers_2023_Siewior.pdf
https://github.com/chaiken/SCALE2024
https://github.com/chaiken/util-scripts
https://lore.kernel.org/netdev/20201209005444.1949356-1-weiwan@google.com/
https://lwn.net/

Helpful kernel configuration

IKHEADERS=y
DEBUG_KERNEL=y
DEBUG_INFO=y
DEBUG_INFO_DWARF_TOOLCHAIN_DEFAULT=y
DEBUG_INFO_BTF=y
DEBUG_INFO_BTF_MODULES=y
PAHOLE_HAS_SPLIT_BTF=y
WQ_CPU_INTENSIVE_REPORT=y
FUNCTION_ERROR_INJECTION=y
BPF_KPROBE_OVERRIDE=y
WQ_WATCHDOG=y

Helpful kernel cmdline parameters

General:
nohz_full
isolcpus

Softirqs:
rcu_nocbs
rcu_nocb_poll
rcutree.use_softirq

workqueue.unbound_cpus
workqueue.watchdog_thresh
workqueue.cpu_intensive_thresh_us
workqueue.power_efficient
workqueue.default_affinity_scope

Relevant sysfs attributes

Workqueues:
/sys/module/workqueue/parameters/*
/sys/devices/virtual/workqueue/*

NET_RX softirqs:
$(find /sys -name threaded)
Other softirqs:
/sys/module/kernel/rcu*
/sys/module/srcu*
/sys/module/rcupdate*
/sys/module/rcutree/*

Helpful software

/usr/bin/pahole

drgn + wq_monitor.py or wq_dump.py

bpfcc-tools package or bcc --> wq_lat.py

bpftrace

https://git.kernel.org/pub/scm/devel/pahole/pahole.git/
https://github.com/osandov/drgn
https://github.com/iovisor/bcc/tree/master/tools
https://github.com/iovisor/bcc/blob/master/tools/wqlat.py
https://github.com/bpftrace/bpftrace

Understanding Tasklet Softirqs

● Tasklets are event callbacks which:

– don’t block (no memory allocation, no I/O);

– have predictable execution time.

● Heavy users include graphics, keyboard, USB:

● Spy on tasklets:

$ sudo bpftrace -e 'tracepoint:irq:tasklet_entry { printf("%s\n",
ksym(args->func)); }'

Yet more workqueue-monitoring tools

● Additional drgn-base kernel tool:
linux/tools/workqueue/wq_monitor.py

$ sudo ~/gitsrc/SCALE2024/run-wq_monitor.sh

● New libbpf tool:

$ sudo python3 ~/gitsrc/bcc/tools/wqlat.py

Demo Board

Boundary Devices Nitrogen 8MQ running v2022.04 U-Boot and
the 6.1-BSP kernel and with
patches to support tools/workqueue/wq_monitor backported.

Userspace is Boundary Devices’ Debian image.

Board is netbooted following simple advice.

https://boundarydevices.com/product/nitrogen8m/
http://linode.boundarydevices.com/u-boot-images/
https://github.com/boundarydevices/linux.git
https://github.com/chaiken/linux
https://boundarydevices.com/debian-12-bookworm-unified-image-for-nitrogen8-boards/
http://she-devel.com/Laptop-to-target-network.html

Dying USB hub:
workqueue: hub_event hogged CPU for >10000us 4
times, consider switching to WQ_UNBOUND

workqueue: set_brightness_delayed hogged CPU for
10000us 4 times, consider switching to WQ_UNBOUND

6.5 kernel

New CPU_INTENSIVE_REPORT Feature

Subject: block: limit request dispatch loop duration
Date: Tue, 5 Apr 2022
From: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com>

When IO requests are made continuously and the target block device
handles requests faster than request arrival, the request dispatch loop
keeps on repeating to dispatch the arriving requests very long time,
more than a minute. Since the loop runs as a workqueue worker task, the
very long loop duration triggers workqueue watchdog timeout and BUG [1].

To avoid the very long loop duration, break the loop periodically. When
opportunity to dispatch requests still exists, check need_resched(). If
need_resched() returns true, the dispatch loop already consumed its time
slice, then reschedule the dispatch work and break the loop. With heavy
IO load, need_resched() does not return true for 20~30 seconds. To cover
such case, check time spent in the dispatch loop with jiffies. If more
than 1 second is spent, reschedule the dispatch work and break the loop.

Intentional Workqueue Throttling

https://lore.kernel.org/all/20220405070358.569266137@linuxfoundation.org/

Rescue kworkers

Run when attempt to start
more kworkers fails due to

ENOMEM.

Each WQ_MEM_RECLAIM
has a rescuer kworker which

responds to “maydays.”

pre-6.6 called slub_flushwq,
inet_frag_wq, etc.

Now called kworker/R*

System Workqueues

Initialized early in boot.

Named “kworker/*events*”.

Used internally by
workqueue management.

Also console, tty.

Triggered
by hard
IRQ?

Directly
invocable?

Long
duration
?

Pinnable
to cores?

softirqs Y N, callback Y N

tasklets Y N, callback N N

workqueues N N,
queue_wor
k()

Y Y via
sysfs, not
taskset

taskset cannot pin workqueues

$ sudo taskset -pc 3 8 [kworker/0:0H-events_highpri]
pid 8's current affinity list: 0
taskset: affinity cannot be set due to PF_NO_SETAFFINITY flag
set
taskset: failed to set pid 8's affinity: Invalid argument

$ sudo taskset -pc 3 913283 [kworker/u17:0-rb_allocator]
pid 913283's current affinity list: 0-7
taskset: affinity cannot be set due to PF_NO_SETAFFINITY flag
set
taskset: failed to set pid 913283's affinity: Invalid argument

Unbound Workqueues

Why:

● try to start execution of work items as soon as possible;

● CPU-intensive workloads can be better managed by the
system scheduler.

But:

● kworkers can change tasks quickly since there is no context
switch.

● kthreads in contrast must wait on the scheduler.

no-threaded-NAPI demo

ARM64$ sudo find /sys/ -name threaded
/sys/devices/platform/soc@0/30800000.bus/30be0000.ethernet/net/eth0/threaded
ARM64$ ps ax | grep napi
ARM64$ top
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMM
1608 debian 20 0 10096 3432 2772 R 11.1 0.2 0:00.04 top

laptop$ netperf -H 10.0.0.2 -t TCP_RR -r 4096 -- -o max_latency,mean_latency

ARM64$ sudo softirqs-bpfcc
Tracing soft irq event time... Hit Ctrl-C to end.
^C
SOFTIRQ TOTAL_usecs
[. . .]
net_rx 1010045

with-threaded-NAPI demo

ARM64$ sudo bash -c 'echo 0 >
/sys/devices/platform/soc@0/30800000.bus/30be0000.ethernet/net/eth0/threaded'
ARM64$ ps ax | grep napi
 1038 ? S 0:00 [napi/eth0-257]
ARM64$ top
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMM
1448 root 20 0 0 0 0 S 5.6 0.0 0:01.82 napi/eth0-257

laptop$ netperf -H 10.0.0.2 -t TCP_RR -r 4096 -- -o max_latency,mean_latency

ARM64$ sudo softirqs-bpfcc
Tracing soft irq event time... Hit Ctrl-C to end.
^C
SOFTIRQ TOTAL_usecs
[. . .]
net_rx 33925

https://github.com/chaiken/SCALE2024

softirqs are
“quicksand code”

https://upload.wikimedia.org/wikipedia/commons/b/ba/Quicksand_warning.jpg

https://accu.org/journals/cvu/35/5/goodliffe/

	Slide 1
	Event-driven vs. resource availability
	Procrastination
	Performers of Deferred Work
	What Happens When Task Deferral Goes Wrong
	Inscrutability and Manageability
	softirqs transition
	softirq flavors
	Unpopularity of legacy mechanism
	Disgusting heuristics
	The new BKL
	What softirqs are running?
	Setting priorities is not enough to control softirqs
	softirq improvement timeline
	Slow Progress with Softirqs
	Workqueues transition
	pools, queues and kworkers diagram
	kworker naming
	kworker watchdog
	kthread pinnability demo
	Care about workqueues, not kworkers
	Setting WQ affinity and moving between pools
	Configuration binds to work
	Workqueue improvement timeline
	Conclusions
	Acknowledgements
	References
	Pertinent kernel configuration
	cmdline parameters and sysfs attributes
	Helpful software
	Tasklets
	Yet more workqueue-monitoring tools
	Boundary Devices Demo Board
	Automatic workqueue-hog detection
	Slide 35
	Rescue and system kworkers
	softirqs and workqueues table
	Workqueues are unpinnable
	Slide 39
	threaded-NAPI demo: off
	threaded-NAPI demo on
	Quicksand Code

