

#CentOSClassroom
at #SCaLE21x

CentOSCentOSProject centos-projectcentos@fosstodon.org

CentOS
Stream

Alt Images SIG

Automotive SIG

Cloud SIG

EPEL

Docs SIG

Integration SIG

Infrastructure SIG

Hyperscale SIG

Messaging SIG

Kmods SIG

ISA SIG

Virtualization SIG

Storage SIG

NFV SIG

Promo SIG

Artwork SIG

Ops Tools SIG

CentOS Stream

@centos@fosstodon.org

 CentOS Stream

● Long-lifecycle distribution derived from Fedora Linux
● New major version released every 3 years
● Each major version is maintained for about 5.5 years
● Reference implementation of “Enterprise Linux”
● RHEL minor versions are derived from CentOS Stream

major versions
● RHEL-style updates (i.e. preference for backports over

rebases)

@centos@fosstodon.org

 CentOS Stream

● Not a rolling release
● Not bleeding edge
● Not experimental

@centos@fosstodon.org

 CentOS Stream

● RHEL maintainers are now also CentOS maintainers
● Often the Fedora maintainers as well
● Often involved in the upstream software project as well
● Holistic management across the ecosystem

@centos@fosstodon.org

 CentOS Stream

● Fixes long standing problems with being a “clone”
● Can accept contributions from the community that

change the operating system
● Can actually fix bugs instead of closing them outright in

pursuit of being “bug-for-bug compatibility”

@centos@fosstodon.org

 CentOS Stream

@centos@fosstodon.org

 CentOS Stream

@centos@fosstodon.org

 CentOS Stream

@centos@fosstodon.org

 CentOS Stream

@centos@fosstodon.org

 CentOS Stream

CentOS Board

@centos@fosstodon.org

 CentOS Board

● Sets strategic direction for CentOS project
● Supposed to be non-technical (but…)
● 10 appointed members serve as long as they’re active
● All but 1 serve as individuals, not as representatives
● Consensus model, nobody has magic veto

SIG Council
(proposed)

@centos@fosstodon.org

 SIG Council proposal

● Board is involved in too many technical discussions
● Need a voice for SIGs to talk to Stream and Infra
● And a way for SIGs to share with each other
● Includes SIG chairs, Stream Eng, and RHEL ENG
● Still a proposal (Board issue #126)

EPEL

@centos@fosstodon.org

 EPEL

● Extra Packages for Enterprise Linux
● Part of Fedora Project
● Fedora packages, built to target CentOS Stream and

RHEL

@centos@fosstodon.org

 EPEL

Special Interest
Groups (SIGs)

@centos@fosstodon.org

 Integration SIG

Integration is verifying that products and services built on
top of RHEL or CentOS Stream will continue to work on
CentOS Stream and the next release of RHEL and will not
break on package updates.

@centos@fosstodon.org

 Integration SIG

● Documented CentOS
Stream gating process

● t_functional test suite
migration to TMT
framework

● Webhooks to relay
CentOS events from
GitLab to Fedora
Message Bus

● Git interface to the Compose
Gate

● Continue the migration and
enhancement of the
compose tests

● Continue expanding the SIG
Documentation

Work in ProgressAccomplishments

@centos@fosstodon.org

 Hyperscale SIG

The Hyperscale SIG focuses on enabling CentOS Stream
deployment on large-scale infrastructures and facilitating
collaboration on packages and tooling.

@centos@fosstodon.org

 Hyperscale SIG

● RPM Copy on Write
● latest systemd (255)
● Fedora-based kernel
● workstation spin
● container images
● cloud images (WIP)
● expanded virtualization

stack (WIP)

● PipeWire and WirePlumber
for audio

● JACK support in PipeWire
● systemd-oomd

CentOS Stream changesSIG Content

@centos@fosstodon.org

 Kmods SIG

The Kmods SIG focuses on packaging and maintaining
kernel modules for CentOS Stream and Enterprise Linux.

● Builds kernel modules for things like filesystems and
hardware controllers that aren’t in CentOS Stream

● Builds modules for both CentOS Stream and RHEL.

@centos@fosstodon.org

 Alternative Images SIG

The Alternate Images SIG's goal will be to build and provide
alternate iso images for CentOS Stream.

@centos@fosstodon.org

 Alternative Images SIG

● Worked with Koji to add and support integration for kiwi
● Worked with CentOS Infra to get the kiwi support

deployed in CBS
● Built our first GNOME and KDE Plasma live ISOs for

AArch64 and x86_64 and released them to users:
https://mirror.stream.centos.org/SIGs/9-stream/altimages
/images/live/

● Working on creating "minimal" Weston live ISO and
"maximum" multi-desktop live ISO

@centos@fosstodon.org

 ISA SIG

The purpose of the ISA SIG is to quantify the potential
benefits of applying existing compiler technology to
distribution packages, targeting more recent CPUs, and
evaluating different options for how these optimizations can
be maintained in a scalable way, and delivered to end users.

@centos@fosstodon.org

 Automotive SIG

Public space for collaboration between third parties
interested in open development of software targeted at
in-vehicle automotive use cases.

@centos@fosstodon.org

 Automotive SIG

● Upstream for Red Hat
In-Vehicle OS (in dev)

● Skunkworks for projects
like Eclipse BlueChi

● Compatible with
emerging standards
e.g. SOAFEE

● Nightly Arm, x86 builds
● Monthly calls, Matrix

channel, mailing list

Upstream process similar to
CentOS - RHEL:

Upstream process
Automotive Stream
Distribution (AutoSD)

@centos@fosstodon.org

 Cloud SIG

Focuses on providing different cloud infrastructure
applications that can be installed and run natively on
CentOS Stream.

● RDO distribution of OpenStack
● OKD distribution of OpenShift/Kubernetes
● SCOS, CoreOS built from CentOS Stream

@centos@fosstodon.org

 Docs SIG, Promo SIG, Artwork SIG

● Promo SIG promotes the CentOS project, handles
outreach, manages social media, and plans events like
CentOS Connect

● Artwork SIG creates artwork, like the new logo
● Docs SIG is newly chartered, a few things in the works:

○ Adapting upstream RHEL docs to CentOS
○ Updating/improving Contributors Guide
○ New simpler docs infra
○ Finding what old wiki content we need to migrate
○ Helping SIGs with their own docs

Q & A

🍪 Cookies 🍪

CPE EPEL Team Lead

RPM PACKAGING WORKSHOP

CARL GEORGE

@carlwgeorge@fosstodon.org

@carlwgeorge:matrix.org

carl@redhat.com

@carlwgeorge@fosstodon.org

 LAB: INITIALIZE

Open this link and click the “Launch” button.

bit.ly/hellorpm

@carlwgeorge@fosstodon.org

 WHAT IS RPM?

● Package format used by:

○ Fedora Linux

○ CentOS Stream

○ Red Hat Enterprise Linux

○ many others

● Consumed by package managers such as dnf

@carlwgeorge@fosstodon.org

 WHY PACKAGE WITH RPM?

● Easily install, reinstall, remove, and upgrade software

● Query and verify installed packages

● Metadata to describe package properties and relationships with

other packages

● Digitally signed packages to validate authenticity

● Distribute packages in dnf repositories

● Pristine sources to ease future maintenance

@carlwgeorge@fosstodon.org

 WHAT IS AN RPM PACKAGE?

● Special archive containing files and metadata

● Two main types

○ Binary RPMs contain files to be installed on the target system

○ Source RPMs contain software source code and instructions for

building binary RPMs

@carlwgeorge@fosstodon.org

 WHAT IS AN RPM SPEC FILE?

● Recipe for building the package

● Preamble that defines metadata about the package

● Body with several sections for various stages of the build process

● Conditionals for flexibility between operating systems, operating

system versions, architectures, etc.

@carlwgeorge@fosstodon.org

 RPM MACROS

● Variables for text substitution in the spec file

○ Syntax: %example or %{example}

● Some macros accept parameters to influence the output

● Can be defined inside the spec file or on the system

○ /usr/lib/rpm/macros.d/macros.*

○ /etc/rpm/macros.*

○ ~/.rpmmacros

@carlwgeorge@fosstodon.org

 RPM MACROS

● Can be conditional to only expand when the macro is defined

○ %{?dist}

● Another conditional form is to insert text when defined

○ %{?rhel:--disable-feature}

● Can be explored outside of the build process

○ rpm --eval '%example' ⟶ evaluate a specific macro

○ rpm --showrc ⟶ print all defined macros

@carlwgeorge@fosstodon.org

 COMMON MACROS

● Filesystem paths

○ %{_bindir} ⟶ /usr/bin

○ %{_datadir} ⟶ /usr/share

○ %{_sysconfdir} ⟶ /etc

● Operating system properties

○ %{rhel} ⟶ 9

○ %{dist} ⟶ .el9

○ %{el9} ⟶ 1

@carlwgeorge@fosstodon.org

 COMMON MACROS

● Build process helpers

○ %autosetup ⟶ extract source code archives and apply patches

○ %configure ⟶ ./configure with packaging-specific options

○ %make_build ⟶ make with packaging-specific options

○ %make_install ⟶ make install with packaging-specific options

@carlwgeorge@fosstodon.org

 COMMON MACROS

● Legacy Python helpers

○ %py3_build ⟶ python3 setup.py build

○ %py3_install ⟶ python3 setup.py install

● Modern Python helpers

○ %pyproject_wheel ⟶ wheel-based Python build

○ %pyproject_install ⟶ wheel-based Python install

@carlwgeorge@fosstodon.org

 COMMON MACROS

● CMake helpers

○ %cmake ⟶ cmake

○ %cmake_build ⟶ cmake --build

○ %cmake_install ⟶ cmake --install

● Meson helpers

○ %meson ⟶ meson

○ %meson_build ⟶ meson compile

○ %meson_install ⟶ meson install

@carlwgeorge@fosstodon.org

 COMMON MACROS

● Test suite helpers

○ %pytest ⟶ pytest

○ %ctest ⟶ ctest

○ %meson_test ⟶ meson test

@carlwgeorge@fosstodon.org

 PACKAGING WORKSPACE SETUP

● rpmdev-setuptree (from the rpmdevtools package) creates

several directories

○ ~/rpmbuild/BUILD

○ ~/rpmbuild/RPMS

○ ~/rpmbuild/SOURCES

○ ~/rpmbuild/SPECS

○ ~/rpmbuild/SRPMS

@carlwgeorge@fosstodon.org

 LAB: PACKAGING WORKSPACE SETUP

Your first challenge is to set up your packaging workspace.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

@carlwgeorge@fosstodon.org

 SPEC FILE PREAMBLE

● Name ⟶ name of the package, should match the spec file name

● Version ⟶ version of the software being packaged

● Release ⟶ used to distinguish between different builds of the

same software version

● Together these properties form an identifier known as the NVR

○ gawk-4.2.1-4.el8

○ tzdata-2024a-1.el9

○ virt-what-1.25-4.fc39

@carlwgeorge@fosstodon.org

 SPEC FILE PREAMBLE

● Epoch ⟶ optional integer used to override normal version-release

sorting order

○ Can never be removed

○ Last resort to correct upgrade path

○ 2024.01 > 1.0.0

○ 2024.01 < 1:1.0.0

@carlwgeorge@fosstodon.org

 SPEC FILE PREAMBLE

● Summary ⟶ short one line summary

● License ⟶ identifier for the license of the software

● URL ⟶ URL for more information about the software

● BuildArch ⟶ defaults to the build system architecture, can be set

to noarch for packages with no architecture-specific files

@carlwgeorge@fosstodon.org

 SPEC FILE PREAMBLE

● Source ⟶ file name or URL of file needed to build the package,

such as a source code archive or default configuration files

● Patch ⟶ file name or URL of patch to apply to the source code

● These two tags can be used multiple times

● Optionally suffixed with numbers

○ Source0

○ Source1

@carlwgeorge@fosstodon.org

 SPEC FILE PREAMBLE

● BuildRequires ⟶ other packages needed to build this package

● Requires ⟶ other packages needed to install this package

● Recommends ⟶ weak requires, installed by default but can be

removed or skipped

● Supplements ⟶ reverse recommends

@carlwgeorge@fosstodon.org

 SPEC FILE PREAMBLE

● Conflicts ⟶ other packages that cannot be installed at the same

time

● Obsoletes ⟶ used to replace one package with another

● Provides ⟶ allows other packages to refer to this package by

another name

@carlwgeorge@fosstodon.org

 SPEC FILE PREAMBLE

● %description ⟶ description of the package, can span multiple

lines

● %package <name> ⟶ starts a preamble section for a separate

package, often referred to as a sub-package

● %description <name> ⟶ description for a sub-package

@carlwgeorge@fosstodon.org

 SPEC FILE BODY

● %prep ⟶ commands to prepare the source code for building, such

as unpacking archives and applying patches

● %build ⟶ commands to build the software

● %install ⟶ commands to copy the desired build artifacts into a

directory tree relative to the %{buildroot}

● %check ⟶ commands to test the software, such as unit tests

@carlwgeorge@fosstodon.org

 SPEC FILE BODY

● %files ⟶ list of files and directories that will be installed on the

target system

● %changelog ⟶ record of changes that have happened to the

package between different versions and releases

@carlwgeorge@fosstodon.org

 FILE ATTRIBUTES

● In %files, each line can be preceded by an attribute

○ %dir ⟶ own just the directory itself, but not its contents

○ %config ⟶ mark as a configuration file

○ %config(noreplace) ⟶ mark as a configuration file and prevent it

from being overwritten on updates

○ %attr(<mode>,<user>,<group>) ⟶ set non-default permissions or

ownership

@carlwgeorge@fosstodon.org

 FILE ATTRIBUTES

● Some attributes accept relative paths, which copy the specified files

into an appropriate path relative to the %{buildroot}

○ %license ⟶ copy files to /usr/share/licenses/%{name}/ and mark

as license files

○ %doc ⟶ copy files to /usr/share/doc/%{name}/ and mark as

documentation files

@carlwgeorge@fosstodon.org

 CREATING SPEC FILES

● From scratch

● Copy a similar spec file and adjust as needed

● Automatic templates from a text editor

● rpmdev-newspec (from the rpmdevtools package) will create a new

spec file from templates

@carlwgeorge@fosstodon.org

 CREATING CHANGELOG ENTRIES

● By hand

● Copy another changelog entry and adjust as needed

● Text editor plugins

● rpmdev-bumpspec (from the rpmdevtools package) will create new

changelog entries and simultaneously adjust the version and/or

release tags

@carlwgeorge@fosstodon.org

 BUILDING RPMS

● RPMs are built with the rpmbuild command

○ rpmbuild expects the directory structure from rpmdev-setuptree

● Various build modes

○ -bs ⟶ build an SRPM from a spec file and sources

○ -bb ⟶ build an RPM from a spec file and sources

○ -ba ⟶ build both an SRPM and an RPM from a spec file and sources

○ --rebuild ⟶ build an RPM from an SRPM

@carlwgeorge@fosstodon.org

 QUALITY CHECKING RPMS

● rpmlint is a linter tool for spec files, SRPMs, and RPMs

● Identifies common packaging errors

● Ideal to resolve all errors and warnings, but not always possible

@carlwgeorge@fosstodon.org

 QUALITY CHECKING RPMS

● rpm can query an uninstalled RPM by using the --package flag

● Consider the following additional flags:

○ --info

○ --list

○ --requires

○ --provides

○ --conflicts

○ --changelog

@carlwgeorge@fosstodon.org

 LAB: PACKAGING BELLO

Your next challenge is to package bello, a program written in Bash.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

@carlwgeorge@fosstodon.org

 INSTALLING BUILD REQUIREMENTS

● rpmbuild needs the build requirements listed in the spec file to be

installed on the build host

● Can be installed manually or with dnf builddep

@carlwgeorge@fosstodon.org

 LAB: PACKAGING CELLO

Your next challenge is to package cello, a program written in C.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

@carlwgeorge@fosstodon.org

 LAB: PACKAGING PELLO

Your next challenge is to package pello, a program written in Python.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

@carlwgeorge@fosstodon.org

 MOCK

● Drawbacks of using rpmbuild directly

○ Build requirements installed directly on build host

○ Build requirements that happen to already be installed are easy to

forget to include in the spec file

○ Can only build RPMs targeting the same operating system and

operating system version as the build host

@carlwgeorge@fosstodon.org

 MOCK

● mock is a tool that builds RPMs in isolated chroots

○ Uses rpmbuild internally

○ Build requirements are installed in the chroot, not the build host

○ Helps identify missing build requirements

○ Can build RPMs targeting a different operating system and operating

system version as the build host

○ Chroots are automatically created and removed

● Widely used (koji, copr, fedpkg, and more)

@carlwgeorge@fosstodon.org

 LAB: BUILDING WITH MOCK

Your final challenge is to build the pello package again, but using the mock

tool this time.

Click the “Start” button and follow the on screen instructions.

Once you have completed the instructions, click the “Next” button.

@carlwgeorge@fosstodon.org

 BECOME A FEDORA/EPEL PACKAGER

Interested in doing more? Consider becoming a Fedora and EPEL package

maintainer.

bit.ly/fedorapackager

THAT’S ALL FOLKS

@carlwgeorge@fosstodon.org

@carlwgeorge:matrix.org

carl@redhat.com

