
Building Your
Own PostgreSQL
DBAs from
Available
Materials

Dave Stokes
@Stoker

David.Stokes@Percona.com

©2023 Percona | Confidential | Internal use only

Talk Proposal
I used to be the Certification Manager for MySQL AB (Sun Microsystems and Oracle) and I
would constantly hear from hiring managers that it was hard to find qualified MySQL DBAs
but it was impossible to find qualified PostgreSQL DBAs.
So if we need more PostgreSQL DBAs can we build them, if not from scratch, from MySQL
DBAs?
I have been delivering a series on PostgreSQL for MySQLs that has a very good response
and it turns out that MySQL DBAs can learn another database easily.

This talk will compare and contrast what MySQL DBAs are used to and how to 'transpose'
their knowledge to PG.

So if you have need for a well trained DBA that knows PostgreSQL then you may have a
resource in the MySQL DBA you already know!

©2023 Percona | Confidential | Internal use only

https://www.investopedia.com/

A make-or-buy decision is an act of choosing between manufacturing a product
in-house or purchasing it from an external supplier.

Also referred to as an outsourcing decision, a make-or-buy decision compares the
costs and benefits associated with producing a necessary good or service internally to
the costs and benefits involved in hiring an outside supplier for the resources in
question.

©2023 Percona | Confidential | Internal use only

How do recognize MySQL DBAs?

First hints are clothing and coffee cups!

©2023 Percona | Confidential | Internal use only

PostgreSQL versus MySQL differences

PostgreSQL:
Better SQL Standard Support
Governed by mailing list, consensus
Active community

MySQL:
‘Easier’
Governed (?) by Oracle
Active community

Both:
Relational Database Management Systems
Open Source
Popular
Old enough to allowed to drink (therefore seen as ‘not cool’ by some)

 'The devil is in the details'
 Ludwig Mies Van Der Rohe.

©2023 Percona | Confidential | Internal use only

You found one!
So you find a likely MySQL DBA that you
would like to convert. Congratulations!

You might mention that they will have:

 Better skills

 Cross training

 Enhanced job opportunities

 And the ability to now complain
knowling about two databases!

©2023 Percona | Confidential | Internal use only

So where do you start?

1. Different approaches to same problems
2. New tools
3. The basics are still the basics

a. Backups/Restore
b. Account administration
c. Performance tuning
d. Query tuning

4. The really neat new stuff
a. Things like two JSON data types, MERGE, Indexes galore, ….

5. The OMGHDWSHTPI2023* stuff

*Oh My Goodness How Do We Still Have This Problem In 2023

©2023 Percona | Confidential | Internal use only

Start with an installation

Install server
Get it running
Sudo su - postgres
psql
Create a superuser account
DVD rental database load

©2023 Percona | Confidential | Internal use only

First steps

Load whichever PG you want and get dvdrental.tar from
https://www.postgresqltutorial.com/wp-content/uploads/2019/05/dvdrental.zip

$sudo su - postgres

$psql

postgresql=# CREATE DATABASE dvdrental;

postgresql=# exit;

#pgrestore -U postgres -d dvdrental dvdrental.tar

©2023 Percona | Confidential | Internal use only

(still as user ‘postgres’)

$createuser –interactive -s <user> The -s is for superuser

Yup this is dangerous as superuser bypasses
some checks but remember you candidate is
an experienced DBA (or should be)

©2023 Percona | Confidential | Internal use only

Back in the <user> account

$psql -d dvdrental

dvdrental=#

©2023 Percona | Confidential | Internal use only

\d commands

The Sakila database has been
used in the MySQL arena for a
very long time in documentation,
exams, blogs, and more.

This database is very similar.

dvdrental=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+---------------+-------+----------
 public | actor | table | postgres
 public | address | table | postgres
 public | category | table | postgres
 public | city | table | postgres
 public | country | table | postgres
 public | customer | table | postgres
 public | film | table | postgres
 public | film_actor | table | postgres
 public | film_category | table | postgres
 public | inventory | table | postgres
 public | language | table | postgres
 public | payment | table | postgres
 public | rental | table | postgres
 public | staff | table | postgres
 public | store | table | postgres
(15 rows)

©2023 Percona | Confidential | Internal use only

There is no SHOW CREATE TABLE

dvdrental=# show create table actor;

ERROR: syntax error at or near "create"

LINE 1: show create table actor;

 ^

dvdrental=# \d actor;

 Table "public.actor"
 Column | Type | Collation | Nullable | Default
-------------+-----------------------------+-----------+----------+---
 actor_id | integer | | not null | nextval('actor_actor_id_seq'::regclass)
 first_name | character varying(45) | | not null |
 last_name | character varying(45) | | not null |
 last_update | timestamp without time zone | | not null | now()
Indexes:
 "actor_pkey" PRIMARY KEY, btree (actor_id)
 "idx_actor_last_name" btree (last_name)
Referenced by:
 TABLE "film_actor" CONSTRAINT "film_actor_actor_id_fkey" FOREIGN KEY (actor_id) REFERENCES actor(actor_id) ON
UPDATE CASCADE ON DELETE RESTRICT
Triggers:
 last_updated BEFORE UPDATE ON actor FOR EACH ROW EXECUTE FUNCTION last_updated()

©2023 Percona | Confidential | Internal use only

Simple queries work as expected
dvdrental=# SELECT *

FROM actor
ORDER BY last_name, first_name
LIMIT 10;

 actor_id | first_name | last_name | last_update
----------+------------+-----------+------------------------
 58 | Christian | Akroyd | 2013-05-26 14:47:57.62
 182 | Debbie | Akroyd | 2013-05-26 14:47:57.62
 92 | Kirsten | Akroyd | 2013-05-26 14:47:57.62
 118 | Cuba | Allen | 2013-05-26 14:47:57.62
 145 | Kim | Allen | 2013-05-26 14:47:57.62
 194 | Meryl | Allen | 2013-05-26 14:47:57.62
 76 | Angelina | Astaire | 2013-05-26 14:47:57.62
 112 | Russell | Bacall | 2013-05-26 14:47:57.62
 190 | Audrey | Bailey | 2013-05-26 14:47:57.62
 67 | Jessica | Bailey | 2013-05-26 14:47:57.62
(10 rows)

©2023 Percona | Confidential | Internal use only

Simple backup

$ pg_dump dvdrental > backup.sql ● pg_dump is the name of the ‘backup’
program

● dvdrental is name of the database to be
backed up

● Dumping the output to file backup.sql

Equivalent to mysqldump

©2023 Percona | Confidential | Internal use only

Simple restore

$ sudo su - postgres
$ psql
(psql 14.3 (Ubuntu 2:14.3-3-focal))
Type “help” for help.
dvdrental=# CREATE DATABASE newdvd;
dvdrental=# \q
$ ^d

$ psql -d newdvd -f backup.sql

©2023 Percona | Confidential | Internal use only

Cheat Sheet
\c dbname Switch connection to a new database
\l List available databases
\dt List available tables
\d table_name Describe a table such as a column, type, modifiers of columns, etc.
\dn List all schemes of the currently connected database
\df List available functions in the current database
\dv List available views in the current database
\du List all users and their assign roles
SELECT version(); Retrieve the current version of PostgreSQL server
\g Execute the last command again
\s Display command history
\s filename Save the command history to a file
\i filename Execute psql commands from a file
\? Know all available psql commands
\h Get help Eg:to get detailed information on ALTER TABLE statement use the \h ALTER TABLE
\e Edit command in your own editor
\a Switch from aligned to non-aligned column output
\H Switch the output to HTML format
\q Exit psql shell

©2023 Percona | Confidential | Internal use only

Goodbye AUTO_INCREMENT, Hello SERIAL data
type

Small Serial 2 bytes 1 to 32,767

Serial 4 bytes 1 to 2,147,483,647

Big Serial 8 bytes 1 to 9,223,372,036,854,775,807

Yup, MySQL has a SERIAL (BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE)

but it is a) not widely used, b) will end up creating two indexes if also declared as the PRIMARY
KEY.

©2023 Percona | Confidential | Internal use only

dvdrental=# CREATE SCHEMA test;
CREATE SCHEMA
dvdrental=# \c test
You are now connected to database "test" as user "percona".
test=# CREATE TABLE x (x SERIAL, y CHAR(20), z CHAR(20));
CREATE TABLE
test=# \d x
 Table "public.x"

 Column | Type | Collation | Nullable | Default

--------+---------------+-----------+----------+------------------------------

 x | integer | | not null | nextval('x_x_seq'::regclass)

 y | character(20) | | |

 z | character(20) | | |

We start sneaking in sequences!

nextval('x_x_seq'::regclass)

©2023 Percona | Confidential | Internal use only

Demo

test=# INSERT INTO X (y,z) VALUES (100,200),(300,450);

INSERT 0 2

test=# SELECT * FROM x;

 x | y | z

---+----------------------+----------------------

 1 | 100 | 200

 2 | 300 | 450

(2 rows)

INSERT replies with the oid and the count.
The count is the number of rows inserted or updated. oid is always 0

Values of ‘x’ generated by server

©2023 Percona | Confidential | Internal use only

Table & Sequence created by create table

test=# \d

 List of relations

 Schema | Name | Type | Owner

--------+---------+----------+---------

 public | x | table | percona

 public | x_x_seq | sequence | percona

©2023 Percona | Confidential | Internal use only

Basic Sequences

test=# CREATE SEQUENCE order_id START 1001;

CREATE SEQUENCE

test=# SELECT NEXTVAL('order_id');

 nextval

 1001

(1 row)

test=# SELECT NEXTVAL('order_id');

 nextval

 1002

(1 row)

test=# select * from order_id;

 last_value | log_cnt | is_called

------------+---------+-----------

 1002 | 31 | t

(1 row)

©2023 Percona | Confidential | Internal use only

Using nextval()

INSERT INTO
 order_details(order_id, item_id, product_name, price)
VALUES
 (100, nextval('order_item_id'), 'DVD Player', 100),
 (100, nextval('order_item_id'), 'Android TV', 550),
 (100, nextval('order_item_id'), 'Speaker', 250);

©2023 Percona | Confidential | Internal use only

Versus a series
test=# create table test1 as (select generate_series(1,100) as id);
SELECT 100
test=# \d test1
 Table "public.test1"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 id | integer | | |

test=# select * from test1 limit 5;
 id

 1
 2
 3
 4
 5
(5 rows)

©2023 Percona | Confidential | Internal use only

Fun with wrapping sequences
test=# create sequence wrap_seq as int minvalue 1 maxvalue 2 CYCLE;
CREATE SEQUENCE
test=# select NEXTVAL('wrap_seq');
 nextval

 1
(1 row)

test=# select NEXTVAL('wrap_seq');
 nextval

 2
(1 row)

test=# select NEXTVAL('wrap_seq');
 nextval

 1
(1 row)

test=# select NEXTVAL('wrap_seq');
 nextval

 2
(1 row)

©2023 Percona | Confidential | Internal use only

Checking the details on sequences
test=# \d order_id;
 Sequence "public.order_id"
 Type | Start | Minimum | Maximum | Increment | Cycles? |
Cache
--------+-------+---------+---------------------+-----------+---------+---

 bigint | 1001 | 1 | 9223372036854775807 | 1 | no |
1

test=# \d wrap_seq;
 Sequence "public.wrap_seq"
 Type | Start | Minimum | Maximum | Increment | Cycles? | Cache
---------+-------+---------+---------+-----------+---------+-------
 integer | 1 | 1 | 2 | 1 | yes | 1

©2023 Percona | Confidential | Internal use only

\ds - list sequences
dvdrental=# \ds
 List of relations
 Schema | Name | Type | Owner
--------+----------------------------+----------+----------
 public | actor_actor_id_seq | sequence | postgres
 public | address_address_id_seq | sequence | postgres
 public | category_category_id_seq | sequence | postgres
 public | city_city_id_seq | sequence | postgres
 public | country_country_id_seq | sequence | postgres
 public | customer_customer_id_seq | sequence | postgres
 public | film_film_id_seq | sequence | postgres
 public | inventory_inventory_id_seq | sequence | postgres
 public | language_language_id_seq | sequence | postgres
 public | payment_payment_id_seq | sequence | postgres
 public | rental_rental_id_seq | sequence | postgres
 public | staff_staff_id_seq | sequence | postgres
 public | store_store_id_seq | sequence | postgres
(13 rows)

©2023 Percona | Confidential | Internal use only

Using Explain
Query tuning can be tough to learn

©2023 Percona | Confidential | Internal use only

Explaining EXPLAIN - MySQL edition
SQL > EXPLAIN SELECT Name FROM City WHERE District='Texas' ORDER BY Name\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: City
 partitions: NULL
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 4188
 filtered: 10
 Extra: Using where; Using filesort
1 row in set, 1 warning (0.0011 sec)
Note (code 1003): /* select#1 */ select `world`.`city`.`Name` AS `Name` from
`world`.`city` where (`world`.`city`.`District` = 'Texas') order by
`world`.`city`.`Name`

©2023 Percona | Confidential | Internal use only

Test data

test=# CREATE TABLE t1 (id SERIAL PRIMARY KEY);
CREATE TABLE
test=# INSERT INTO t1 SELECT GENERATE_SERIES(1,100000);
INSERT 0 100000
test=# CREATE TABLE t2 (id INT NOT NULL);
CREATE TABLE
test=# INSERT INTO t2 SELECT GENERATE_SERIES(1,100000);
INSERT 0 100000
test=#

©2023 Percona | Confidential | Internal use only

With and without index - Ignore the ANALYZE for
now
test=# EXPLAIN (ANALYZE) SELECT 1 FROM t2 WHERE ID=101; #NO Index
 QUERY PLAN

 Seq Scan on t2 (cost=0.00..1693.00 rows=1 width=4) (actual time=0.019..5.641 rows=1 loops=1)
 Filter: (id = 101)
 Rows Removed by Filter: 99999
 Planning Time: 0.054 ms
 Execution Time: 5.658 ms
(5 rows)
test=# EXPLAIN (ANALYZE) SELECT 1 FROM t1 WHERE ID=101; #YES Index
 QUERY PLAN
--

 Index Only Scan using t1_pkey on t1 (cost=0.29..4.31 rows=1 width=4) (actual time=0.090..0.091
rows=1 loops=1)
 Index Cond: (id = 101)
 Heap Fetches: 0
 Planning Time: 0.469 ms
 Execution Time: 0.110 ms This is a good comparison of timings

Options in parens new to a MySQL DBA

And no YAML or XML output

©2023 Percona | Confidential | Internal use only

Learning to read the output of EXPLAIN
dvdrental=# explain SELECT title, first_name, last_name

dvdrental-# FROM film f

dvdrental-# INNER JOIN film_actor fa ON f.film_id=fa.film_id

dvdrental-# INNER JOIN actor a ON fa.actor_id=a.actor_id;

 QUERY PLAN

 Hash Join (cost=83.00..196.65 rows=5462 width=28)

 Hash Cond: (fa.actor_id = a.actor_id)

 -> Hash Join (cost=76.50..175.51 rows=5462 width=17)

 Hash Cond: (fa.film_id = f.film_id)

 -> Seq Scan on film_actor fa (cost=0.00..84.62 rows=5462 width=4)

 -> Hash (cost=64.00..64.00 rows=1000 width=19)

 -> Seq Scan on film f (cost=0.00..64.00 rows=1000 width=19)

 -> Hash (cost=4.00..4.00 rows=200 width=17)

 -> Seq Scan on actor a (cost=0.00..4.00 rows=200 width=17)

(9 rows)

©2023 Percona | Confidential | Internal use only

Connections

MySQL has a series of threads PostgreSQL needs to fork a new process
There are connection poolers available

©2023 Percona | Confidential | Internal use only

OMGHDWSHTPI2023

©2023 Percona | Confidential | Internal use only

Vacuum

©2023 Percona | Confidential | Internal use only

36

VACUUM reclaims storage occupied by dead tuples*.

In normal PostgreSQL operation, tuples that are deleted
or obsoleted by an update are not physically removed
from their table; they remain present until a VACUUM is
done.

Therefore it's necessary to do VACUUM periodically,
especially on frequently-updated tables.
-PG Documentation

A tuple is PostgreSQL's internal representation of a row in a table.

MySQL uses as difference
MVCC approach that
automatically takes care
of dead tuples and
vacuuming will seem very
odd to a MySQL DBA

©2023 Percona | Confidential | Internal use only

Teach VACUUM and AUTOVACUUM

PostgreSQL's VACUUM command has to process each table on a regular basis for several reasons:
 To recover or reuse disk space occupied by updated or deleted rows.
 To update data statistics used by the PostgreSQL query planner.
 To update the visibility map, which speeds up index-only scans.
 To protect against loss of very old data due to transaction ID wraparound or multixact ID

wraparound.

©2023 Percona | Confidential | Internal use only

test=# create table foo (id int, value int);
CREATE TABLE

test=# insert into foo values (1,1);
INSERT 0 1

38

test=# update foo set value=2 where id =1;
UPDATE 1
test=# update foo set value=3 where id =1;
UPDATE 1
test=# update foo set value=4 where id =1;
UPDATE 1

test=# select relname, n_dead_tup from pg_stat_all_tables where relname = 'foo';
 relname | n_dead_tup
---------+------------
 foo | 3
(1 row)

©2023 Percona | Confidential | Internal use only

Using VACUUM
test=# VACUUM foo;
VACUUM
test=# select relname, n_dead_tup from pg_stat_all_tables where relname = 'foo';
 relname | n_dead_tup
---------+------------
 foo | 0
(1 row)

39

©2023 Percona | Confidential | Internal use only

Visibility Map

Vacuum maintains a visibility map for each table to keep track of which pages contain only tuples
that are known to be visible to all active transactions (and all future transactions, until the page is
again modified).

This has two purposes.
 vacuum itself can skip such pages on the next run, since there is nothing to clean up.
 Second, it allows PostgreSQL to answer some queries using only the index, without reference

to the underlying table.

Since PostgreSQL indexes don't contain tuple visibility information, a normal index scan
fetches the heap tuple for each matching index entry, to check whether it should be seen by
the current transaction. An index-only scan, on the other hand, checks the visibility map
first. If it's known that all tuples on the page are visible, the heap fetch can be skipped. This is
most useful on large data sets where the visibility map can prevent disk accesses.

The visibility map is vastly smaller than the heap, so it can easily be cached even when the
heap is very large.

40

©2023 Percona | Confidential | Internal use only

Wrap Around XIDs

PostgreSQL's MVCC transaction semantics depend on being able to compare transaction ID
(XID) numbers: a row version with an insertion XID greater than the current transaction XID is
“in the future” and should not be visible to the current transaction.

XIDs have limited size of 32 bits so a cluster that runs for a long time (more than 4 billion
transactions) would suffer transaction ID wraparound

 XID counter wraps around to zero

 transactions that were in the past appear to be in the future — which means their output
become invisible. In short, catastrophic data loss.

To avoid this, it is necessary to vacuum every table in every database at least once every two
billion transactions.

41

©2023 Percona | Confidential | Internal use only

Caveats

Plain VACUUM (without FULL) simply reclaims space and makes it available for re-use.

 This form of the command can operate in parallel with normal reading and writing of the
table, as an exclusive lock is not obtained.

 However, extra space is not returned to the operating system (in most cases); it's just kept
available for re-use within the same table.

It also allows us to leverage multiple CPUs in order to process indexes.

 This feature is known as parallel vacuum.

VACUUM FULL rewrites the entire contents of the table into a new disk file with no extra space,
allowing unused space to be returned to the operating system.

 This form is much slower and requires an ACCESS EXCLUSIVE lock on each table while it is
being processed.

42

©2023 Percona | Confidential | Internal use only

Autovacuum

PostgreSQL has an optional but highly recommended feature called autovacuum, whose
purpose is to automate the execution of VACUUM and ANALYZE commands.

test=# SHOW autovacuum;
 autovacuum

 on
(1 row)

43

©2023 Percona | Confidential | Internal use only

Don’t forget

REINDEX
CLUSTER
VACUUM FULL
pg_repack

©2023 Percona | Confidential | Internal use only

Transaction ID
Wraparound

32-bit transaction ID - Much Too Small

©2023 Percona | Confidential | Internal use only

XIDs can be viewed as lying on a circle or circular buffer. As long as the end of
that buffer does not jump past the front, the system will function correctly.

To prevent running out of XIDs and avoid wraparound, the vacuum process is
also responsible for “freezing” row versions that are over a certain age (tens of
millions of transactions old by default).

However, there are failure modes which prevent it from freezing extremely
old tuples and the oldest unfrozen tuple limits the number of past IDs that are
visible to a transaction (only two billion past IDs are visible).

If the remaining XID count reaches one million, the database will stop
accepting commands and must be restarted in single-user mode to recover.
Therefore, it is extremely important to monitor the remaining XIDs so that your
database never gets into this state.

©2023 Percona | Confidential | Internal use only

TOAST

The
Oversized-Attribute
Storage Technique
– similar to what
InnoDB does

©2023 Percona | Confidential | Internal use only

Teach Roles
Yes, MySQL has roles but they are
not that popular.

PostgreSQL Basics: Roles and
Privileges

https://www.red-gate.com/simple-
talk/databases/postgresql/postgre
sql-basics-roles-and-privileges/

PostgreSQL Basics: Object
Ownership and Default Privileges

https://www.red-gate.com/simple-
talk/uncategorized/postgresql-basi
cs-object-ownership-and-default-
privileges/

©2023 Percona | Confidential | Internal use only

Wow Factor
The Things a MySQL DBA will be impressed by

©2023 Percona | Confidential | Internal use only

Materialized Views, Watch, Many Types of
Indexes

SELECT
 fa.actor_id,
 SUM(length) FILTER (WHERE rating = 'R'),
 SUM(length) FILTER (WHERE rating = 'PG')
FROM film_actor AS fa
LEFT JOIN film AS f
 ON f.film_id = fa.film_id
GROUP BY fa.actor_id

OMGHDWSHTPI2023*
Oh My Goodness How Do We Still Have This Problem In 2023?

©2023 Percona | Confidential | Internal use only

Replication

No open source equivalent to InnoDB Cluster or even Galera

©2023 Percona | Confidential | Internal use only

Need for connection pooling - multi-process versus multi-threading

©2023 Percona | Confidential | Internal use only

Some reading

https://www.youtube.com/watch?v=S7jEJ9o9o2o
https://www.highgo.ca/2021/03/20/how-to-check-and-resolve-bloat-in-postgresql/
https://onesignal.com/blog/lessons-learned-from-5-years-of-scaling-postgresql/
https://www.postgresql.org/docs/
https://www.scalingpostgres.com/
https://psql-tips.org/psql_tips_all.html

https://www.youtube.com/watch?v=S7jEJ9o9o2o
https://www.highgo.ca/2021/03/20/how-to-check-and-resolve-bloat-in-postgresql/
https://onesignal.com/blog/lessons-learned-from-5-years-of-scaling-postgresql/
https://www.postgresql.org/docs/
https://www.scalingpostgres.com/
https://psql-tips.org/psql_tips_all.html

©2023 Percona | Confidential | Internal use only

“It is different”

Different != Better

©2023 Percona | Confidential | Internal use only

I really need your feedback here!

What Else To Teach?!?

Thank You!
David.Stokes@Percona.com
@Stoker
Speakerdeck.com/Stoker

mailto:David.Stokes@Percona.com

