Better latency
With fewer servers

avolding RAM noisy neighbors

Positive Affirmations for Site Reliability Engineers by KRAZAM (link)

https://www.youtube.com/watch?v=ia8Q51ouA_s

Why SRE?

Positive Affirmations for Site Reliability Engineers by KRAZAM (link)

https://www.youtube.com/watch?v=ia8Q51ouA_s

Performance matters

Company Year Impact Source
Amazon 2' 50/50 split A/B test M
No functional or visual differences
Google 2 P source
veg’sjog A ve_rsioln B
Akamal 2' (Optimized page) (Original page) Source
wf‘; “AN%I]!SFM'D‘ :yz‘:ﬂ; l‘An%lﬂsm‘g

Ebay 21 s . source
Vodafone 2 source
Yelp 2 meue wae] s e source
Adobe Experience 2| — & A | . - source
Cloud o 1. ce

Pfizer 21 —— source
Rakuten 24 2022 -0.4s latency — +53% revenue per visitor, +33% source

conversion, +15% average order value

https://www.conductor.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://research.google/blog/speed-matters/
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://web.dev/case-studies/shopping-for-speed-on-ebay
https://web.dev/case-studies/vodafone
https://engineeringblog.yelp.com/2021/01/boosting-user-conversion-with-ux-performance-wins.html
https://business.adobe.com/blog/perspectives/a-quick-start-guide-to-web-performance
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-speed-accessibility/
https://web.dev/case-studies/rakuten?hl=en

Users want more functionality

amazoncom
N

Easy to blame “complexity”

I'M NOT SAYING
IT'S THE NETWORK

| £5
!

BUTIT'S THE NE

Blame resource congestion!

Run 20%-50%

more transactions

Reduce tail latency

by 20-80%

2011 2013 2015 2016 2018 2019 2020 2021 2023

>

BubbleUp Heracles Perflso Caladan
OG m Uiy

Dirigent

Can be made
widely useful

CPI2 CAT at Scale
~~ ~~ (_)
7 J

Talk Outline

The Why Available Mitigation Current
Problem Solve Tooling Systems Efforts

Hi, I'm Jonathan Perry

yonch@yonch.com

@yonchco

Ph.D.: Network Noisy Neighbor mitigation
CEO @ Flowmill: Network observability
CEO @ Unvariance

I I Institute of
Technology

v -
c0@eo- \
: ... f splunk> "0
. OpenTelemetry

FLOWMILL

I I I = mm Massachusetts
L]
L]

mailto:yonch@yonch.com

The Problem

e \What is memory noisy neighbor
e How does this affect my Pods?
e Do | have it in my cluster?

Noisy neighbor: tragedy of the commons

Apps access physical resources
App A App B App C

Shared resources are constrained

Shared
Shared Interconnect IO and
Network

Shared Last Level Cache

Shared Memory Bandwidth

Noisy neighbor: tragedy of the commons

Apps access physical resources
App A App B App C

Shared resources are constrained

One App can use more than its

. . Shared
fair share, degrading others Shared Interconnect 10 and

Network

This talk: Shared Last Level Cache
e Cache

e Memory bandwidth Shared Memory Bandwidth

Latency increases with memory bandwidth

255.94,256.17

Change memory bandwidth,

250_
Measure latency -

[
(=3
(=}

Knee-point around 80%

Access latency (ns)
&

80% — 100% bandwidth o]
latency doubles! ’

oL e e
0 10 20 30 40 50 60 70 80 90 100 110 120
Memory Bandwidth (GB/s)

W. Tang et al, “Themis: Fair Memory Subsystem Resource Sharing with Differentiated QoS in Public Clouds,” ICPP ’22. doi: 10.1145/3545008.3545064.

https://doi.org/10.1145/3545008.3545064

Does memory latency cause slowdown?

CPUs try to hide memory latency:

e Prefetchers
e Reorder buffer (ROB)
e C(Caches

Are they effective?

We need to measure slowdown
Popular metric:

Cycles Per Instruction — CPI

CPU waits for memory — Stall cycles

Many stalls — High CPI
Few stalls — Low CPI

80% bandwidth cap — 25% more compute-efficient

Alibaba Cloud production trace: 8k+ hosts, 1M+ containers, 24 hours

1000 - 18 17
500 |
o 16 1
904 I |
E] | |] |] |] | _—] |] —_— —_—
] Y141
@ T
57 5
T 60 - E i
g - 5 121 '
g z | |] |] |] — —_—
2 40 “ L
: Ll |
e 10 |||
u
20 1
0{* 08 45 . : ; . '. i
0 10000 20000 30000 40000 50000 60000 70000 © 2500 5000 10 20 0 40 a0 60 70
Socket Memary bandwidth(MiB/s) Memory Latency(ns)

Memory bandwidth only — has cache mitigation

K. Wang et al., “Characterizing Job Microarchitectural Profiles at Scale: Dataset and Analysis,”, ICPP’22. doi: 10.1145/3545008.3545026.

https://doi.org/10.1145/3545008.3545026

Cache contention degrades access times

L1 L2 L3 DRAM
1.5ns 4.1ns 21ns 85ns (unloaded) to 250ns (loaded)
Baseline I Cool

Noisy neighbor

= —
Hyperthread I -- Cool
noisy neighbor

Cache sizes, Ice Lake SP cache benchmarks, DRAM Latency on Xeon Gold 6278

https://www.intel.com/content/www/us/en/support/articles/000027820/processors/intel-xeon-processors.html
https://www.anandtech.com/show/16594/intel-3rd-gen-xeon-scalable-review/4

Tall latency can explode with noisy neighbors!

websearch 10% 20% 30% 40% 50% .60% 70% 80% 90%
baseline(approx) 52% 57% 61% 60% 63% 62% 66%| 77%| 88%

LLC(small) 103% 96%| 102% 96%| 104% %% 100%| 103% | 103% Goog Ie 201 5
LLC(med) =1 q10% > 4.75X ’

LLC(big) >300% >300% >300% >300% =

>300%

DRAM >300% >300% >300% >300% >300% 3 prOdUCtion SerViCGS
ml_cluster
baseline(approx) 3\/ 58% 57% 59%
LLC(small) 88%| 84%| 110%| 93% [WPA[F 5 35 get % Of SLO tal’get

0, 0, 0, > N .
HClmed) S D I X (99th / 95th percentile)

>300% >300% >300% =>300% >300% >300%
>300% >300% >300% >300% >300%

>300%
>300%

LLC(big)

w/ synthetic noise
generators

memkeyval 10% 20% 30% 40% 50% .00% 70% 80% 90%

baseline(approx) 20% 20% 21%| 21% 22%
LLC(small) 88%(91%| 101%| 91%| 101% [WEERZMNN E:T0L7 M KoL 78
LLC(med) 148% 138% 230% 181% 162% > 13.6x
LLC(big) >300% >300% >300% >300% >300% >300% 280% 222%

>300% >300% >300% >300% >300% >300% 234%

D. Lo et al. “Heracles: improving resource efficiency at scale,”, ISCA’15. doi: 10.1145/2749469.2749475.

https://doi.org/10.1145/2749469.2749475

Survey: Node size

Please raise hand if:
e Know what VMs or bare-metal are used in prod

e Never use fraction of physical CPU

| S N e e =
prod cluster
[Ceneet) 1 1 Conec) |

————————————

batch clucter

Separating batch clusters

——————

What I think I'm running

Separating batch clusters

atch clucter

What I think I'm running

Jobs from come random tenants J

(, == __\\f _____ \\f _____ \\
ey | @D | @D

_____ \ === "\ === ="\
L 22X }K X
(:::::\ (:::::\ ;:::::\
1 Ih Ih 1
Q00000
\yefipey Jo---—- Jo-—-—- J

,broe/clucter

[(ontet) 1 Comtal) 1 Conte) |

atch clucter

What I'm actually running

Separating batch clusters

Does your provider protect your VMs
from other VMs on the same machine?

Jobs from come random tenants

]

What I'm actually running

atch clucter

Engineers spend years
optimizing user experience

Bare-metal: no cross-tenant noisy neighbor

g

A few 100-core machines Lots of 8-core VMs

* Need enough servers to handle server failures (“~10 servers”)

Does my cluster have noisy neighbors?

Run: @0 GClInit [0 Mark Phase Sweep Phase
. [O_,
e Memcached X 100 - ~
e garbage-collected workload z
@ 50-
: : . £
Mark Phase is memory-intensive, 2 .
causes significant slowdown! —
@ 10° A
5% Lot —7— memcached
Not only “big-data” is noisy g .
S 10°
.) . g 102 4
Also: security scanning, video a Ll : : A :
treaming, transcodin 0 ! 2 3 N > °
streaming, transcoding... Time (s)

J. Fried et al., “Caladan: Mitigating Interference at Microsecond Timescales,”. OSDI'20. on usenix.org

https://www.usenix.org/conference/osdi20/presentation/fried

Implications for Al Workloads

Distributed Data Parallelism o
GPUO GPU 1 GPU2 GPU3 CPU at training:

~

e W W 50
e Read data
Layer 2 Layer 2 Layer 2 Layer 2 |
_ e Pre-process
e

oo | | e] —t T | e Transfer micro-batches — GPU
Global Batch Layer 1 [[Layer1 | Layer 1 W {"ay"” } Forward

R

\ .
J RESSTEER || | SRS o = CPU at inference:
Backward e Input —» GPU
Layer 0 Layer 0 Layer 0 Layer 0 ‘ |
))) e e Output—GPU
| Micro Batch 0 | | Micro Batch 1 | | Micro Batch2 | Micro Batch 3 | L TOkenIZatIOn, batChIng
1 § ‘ 3 (. 32 . .

e User communication

Pipeline Parallelism (Inter-Layer) These compete for memory bandwidth

Tensor Parallelism (Intra-Layer)

IR IS5
{ R | o e e o

EEEEEE \ — — . .- — . .
L SaaaLlm) D e i e ey Looking for use-cases
& L[”‘ggT_‘l‘; i ‘Miuvsubmzﬁ.i Layers0-8 | ——» | Layes-17 — |Layens 18-28 uynm27v35‘

; —
T HeHHA

Recap: The Problem

High memory contention
— High memory latency
— High CPI (low efficiency)

Socket Memary atency(ns) o
5 88 58 8 3 8 8, 8 3

= (- — _— — — L
514
F 1
H T
s «
0

0 30000 40000 50000 60300 70000 10 20 EY “ 50 60 7

00
‘Socket Memory bandwidth(Mig/s) Memory Latency(ns)

Tail latency with noisy neighbor
increases 4-13x

Many workloads can be noisy (e.g.,
garbage collection)

> o

99.9% Lat.
B e e
o o o o
2 2
3
o

o 3
a

o

a

=

@

-

% Lat. (us) Mem. B/W (%)
)
o o

Why Solve: Benefits

e State of cluster utilization
e How tail latency affects utilization
e Leveraging reduced tail latency

% of containers

60%

50%

40%

30%

20%

10%

0%

Usage of requested CPU

—

<25% 25-50% 50-75% 75-100% 100-125% 125-150% 150-175% 175-200% >200%

% of requested CPU being utilized

>65% OF
CONTAINERS
USE LESS

THAN HALF OF
REQUESTED CPU

Source: Datadog

source

https://www.datadoghq.com/container-report/

Survey: cluster utilization

Raise hand if:

Know prod cluster avg. CPU utilization
Above 20%7
Above 30%"?
Above 40%"7
Above 50%"?

Hyperscaler CPU was low...

Google 2011
Facebook 2020
Twitter 2014

1.0

ot
®

ipn of cell capacity
&

i~
i

——ﬁ)

0.2

|

rqac

F

0.0

Time

Then.. breakthrough?

Google 2019 3 PN

Alibaba 2022 ; ALY AN A Ve o around 50%
Google 2011 \é; . m M‘L" A ‘M‘M. | around 35%
Facebook 2020 —=>; v"m"yw" |

Twitter 2014

Time
Vertical autoscaler Handle noisy neighbor /\

Google’s Autopilot (EuroSys’20, not GKE) e Reduce cycles per request I:IIKS
StormForge, PerfectScale, FairWinds, ... e Improve tail latency

Better packing — Less wasted resources — Improved SLA at higher utilization

Tuning of Scaling Behavior

Adjusting scaling:
e Manual, (‘spec.replicas’)

e HPA (Horizontal Pod Autoscaler)

o CPU Utilization
o Requests per second
o Memory Utilization

How do we set thresholds?
So we meet SLOs

Improve SLOs — Higher utilization OK

Kubernetes.io HPA walkthrough, Kubecost, OpenShift HPA docs

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://www.kubecost.com/kubernetes-autoscaling/kubernetes-hpa/
https://docs.openshift.com/container-platform/4.14/nodes/pods/nodes-pods-autoscaling.html

Tuning of Scaling Behavior (cont'd)

Improve SLOs — Higher utilization OK NEEDS MORE

e Reduce cost

o same functionality

o fewer replicas (at higher utilization) oo

e More features / business outcomes Google 2011

)] Facebook 2020
o added functionality Twitter 2014

o same replicas (at higher utilization)
e Improve SLO

o Same functionality

o Same replicas (same utilization)

Available Tooling

e Hardware and software mitigation
e Hardware interfaces, limitations
e Supportin Linux

Memory system mitigation knobs

Shared Interconnect

Shared Last Level Cache

Shared Memory Bandwidth

Shared
|0 and
Network

Reduce demand (#cycles):

Core pinning
Frequency scaling

Direct control:

Cache allocation
Memory bandwidth limits

Direct Control: Intel RDT’s Interface

e CPU performs allocation using identifiers

o For measurement, RMIDs (Resource Measurement ID)
o For enforcement, CLOSs (Classes of Service)

e On every context switch, OS sets thread’s (CLOS, RMID)
e Canread RMID’s memory bandwidth, cache occupancy

e On EC2’s m7i.metal-24xl:

o 448 RMIDs
o 15CLOSs

e Supports GPU-DRAM bandwidth
o Intel RDT for Non-CPU Agents

] Limited

Containers (not) to the rescue!

Different focus: Cgroup v2 Responsibility

® CyCIeS -~ CPU Regulates distribution of CPU cycles

® memory capacity (Size) —~ Memory Controls distribution and accounting of memory usage
10 Manages distribution of IO resources
PID Limits the number of processes in a cgroup
Cpuset Assigns specific CPU(s) and memory nodes
Device Controls access to device files
RDMA Regulates distribution and accounting of RDMA resources

HugeTLB Limits the HugeTLB usage per control group

Perf_event alows perf events to be filtered by cgroup path

Misc Provides resource limiting for scalar resources not covered
by other controllers

Reading 1 2

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#controllers
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/setting-limits-for-applications_managing-monitoring-and-updating-the-kernel#understanding-control-groups_setting-limits-for-applications

Linux supports allocation

egroup resctrl allocates:

e Memory bandwidth Linux resctrl CPU support
e Cache space

Kernel
Separate subsystem:
e Maintainers wanted self-tuning like cpuset Intel RDT v4.10, v4.12
o Intel Resource Director Technology (201 6)
e Limited number of CLOS, RMIDs
e API through /sys/fs/resctrl AMD QoS V5.0 (2018)
AMD Platform Quality of Service
Demo: ARM MPAM P,
e Facebook Resource Control Demo Memory System Resource x86—generic
Partitioning and Monitoring Review needed

by Tejun Heo and collaborators

AMD, ARM, Intel “Linux kernel interface” discussion, lkml discussion

https://github.com/facebookexperimental/resctl-demo
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/other/56375_1_03_PUB.pdf
https://developer.arm.com/documentation/108032/0100/A-closer-look-at-MPAM-software/Linux-MPAM-overview
https://github.com/opencontainers/runc/issues/433#issue-121778906
https://lkml2.uits.iu.edu/hypermail/linux/kernel/1508.0/04858.html#:~:text=,issue
https://github.com/torvalds/linux/commit/f20e57892806ad244eaec7a7ae365e78fee53377
https://github.com/torvalds/linux/commit/a9cad3d4f046bbd8f096b78d220c8d7074c2e93f
https://github.com/torvalds/linux/commit/a6f771c9bf4eea2da1516e70c283ede61a7d666f
https://git.kernel.org/pub/scm/linux/kernel/git/morse/linux.git/log/?h=mpam/snapshot/v6.12-rc1
https://lore.kernel.org/all/20241004180347.19985-1-james.morse@arm.com/

Activities [Terminal ~

oct2 5:57PM L & o O~
n fish /home/htejun o = @
Welcome to fish, the friendly interactive shell

Type “help® for instructions on how to use fish

htejun@sim ~> |

Credit: Meta; Tejun Heo and collaborators. resctl-demo on GitHub.

https://github.com/facebookexperimental/resctl-demo
https://docs.google.com/file/d/1z65fvlZUREZVQjlAei5uXtwIVoQgLv8h/preview

Activities [Terminal v oct2 6:02PM

j+1 demo@resctl-demo: ~
l

2020-10- 02 10 02 15 PM
satisfied: 17 missed:) wor 46. 51.0g

workload: +pre re system: +pressure { 26. 4.49

jobs: 1/ 1 failed: @ «cfg_warn @ -overload -cr t 1 0. 604m -

jobs: ©/ @ failed: 0 € 0. 140m . - -

load: 61.6% lat: 60ms cpu: 46.8% mem: 51.1g 1io: . - - -

78. 56.6g 130m 8.2m 1.4m 89.

] ; ; Titiod - : ; ; Jox. z
memory hog. The former will eat up as many CPU cycles as it can get its hands on along
with some memory and IO bandwidth. The latter will keep gobbling up memory causing
memory shortage and subsequent I0s once memory is filled up. The combination is a potent
1000 +-1+ H+44 antagonist to our interactive rd-hashd.

[Disable resource control and start the competitions]
800
See the graph for the steep drop in RPS for hashd: That's the competitions taking away
600 . »e " 059 909 its resources: Not good.

Once workload's memory pressure (memP%) in the top right panel starts spiking, you might
not have a lot of time before the whole system starts stalling severely. Let's stop
them.

[Stop the compile job and memory hog]
Once RPS climbs back up and the memory usage of workload in the top right panel stops

growing, start the same competitions but with resource control enabled and the compile
job under the supervision of the sideloader:

Manag 1t I [Start the competitions under full resource control]
[INFO] side: "compile-job" started
[INFO] svc: "rd-sysload-memory-hog.service" started (Running) Watch the stable RPS. rd-hashd is now fully protected against the competitions. The
ader compile job and memory hog are throttled. The compile job doesn't seem to be making much
JOB: Starting rd-sideload-compile-job.service progress. This is because sideloads (workloads under the siderloader supersivision) are
Running as unit: rd-sideload-compile- jobAservice configured to have lower priority than sysloads (workloads under system). Don't worry
[INFO] svc: "rd-sysload-memory-hog.service" transitioned from Running about the distinction between sideloads and sysloads for now. We'll revisit them later.
to Other(deactlvatlng stop- 51gterm)
-agent] [INFO] svc: "rd-sysload-memory-hog.service" stopped (NotFound) Let's stop the memory hog and see what happens.

| ot logs | Stop the memory hog

cc security/apparmor/match.o
cC crypto/scatterwalk.o fine and the compile job is now making reasonable forward
cc arch/x86/events/intel/bts.{ 1 1 H H loads are now sharing the machine safely and productively,
cC security/selinux/netlink.o Maln workload IS dOIng flne ssible before.

cC crypto/proc.o
AR arch/x86/kernel/fpu/built-in.a Continue reading to learn more about the various components which make this possible.
CC arch/x86/kernel/irq_work.o
HDRTEST usr/include/drm/msm_drm.h [Next: Cgroup and Resource Protection]

Credit: Meta; Tejun Heo and collaborators. resctl-demo on GitHub.

https://github.com/facebookexperimental/resctl-demo

Hypervisors support allocation

e VMware in Telco Cloud
Automation

— Telco + Finance?

e Static

Telco Cloud Automation, KVM libvirt NUMA tuning, Xen memory bandwidth, Xen LLC, ACRN,

Intel RDT support in hypervisors

Cache partitioning | Memory bandwidth
Xen v 4
KVM v
VMware 4 Monitor (vSphere)
Hyper-V Monitor PMU
ACRN v v

Hyper-V PMU

https://docs.vmware.com/en/VMware-Telco-Cloud-Automation/1.9.5/rn/vmware-telco-cloud-automation-195-release-notes.html?hWord=N4IgpgHiBcIMIEMDGALMACAggG2weyQQBcBLPAOxAF8g
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html-single/virtualization_tuning_and_optimization_guide/index#sect_VTOG-vCPU_cache_reservation
http://xenbits.xenproject.org/docs/unstable/features/intel_psr_mba.html
http://xenbits.xenproject.org/docs/4.14-testing/features/intel_psr_cat_cdp.html
https://projectacrn.github.io/latest/developer-guides/hld/hv-rdt.html
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/performance-monitoring-hardware

Mitigation Systems

e Type 1: cycles per instruction (CPI)
e Type 2: latency control
e Type 3: usage control

Type 1: Cycles Per Instruction (CPI)

Uses: High interference — high CPI

Measure Detect Find Noisy Limit Noisy
CPI Outliers Neighbor Neighbor

"

6 7
4.8 5.6Z
S
- € g
Per-task £36 42%
CPI history = 5
: a 2.4 28g
S 3
7%]
<—H o
% 2 143

2 2

ey P00 205 210 215 220 225 28

Sample Percentage
(] Y (%))
2 2

N
X

°
o~ B

o
X

2
CPI

X. Zhang et al., “CPI 2: CPU performance isolation for shared compute clusters,” in EuroSys 2013. doi: 10.1145/2465351.2465388.

https://doi.org/10.1145/2465351.2465388

! r—
—

I say when 1
_ lo S’?‘ap/ ‘l

Type 1: Cycles Per Instruction

cluster CPI sample-
Sﬁhé‘du l‘&r smoothed, aggregator
- averaged, —

CPI specs

4 \ // / |
agent |]||[_agent]||[_agent agent || |[_agent
[task | [[[task | || [task | || [task] [|[task |
[task | [| [task | ||[task] || [task | || [task |
task
machines

“We have rolled out CPI? to all of Google’s shared
compute clusters.” — paper authors, 2013 @Google

Type 1: CPI
Measurement Cycles, Instructions
Averaging High
Cluster components | Aggregator

Pros

e Simple to measure

Cons

e Complex deployment
e Averaging — Slow
reaction

X. Zhang et al., “CPI 2: CPU performance isolation for shared compute clusters,” in EuroSys 2013. doi: 10.1145/2465351.2465388.

https://doi.org/10.1145/2465351.2465388

Type 2: Latency Control

Use application latency

Example algorithm:

- ~ Type 2: Latency
Measure
latencies) Measurement App latency
L N Averaging Medium
Compute % of
; | targetSLO | Cluster components Node only
Y Pros e No profiling — Node-local
Choose fast e Control what you care
slow tasks about
& Cons e High developer effort

move resource from

@[fast—slow

S. Chen et al. “PARTIES: QoS-Aware Resource Partitioning for Multiple Interactive Services,” in ASPLOS ’19. doi: 10.1145/3297858.3304005.

} e Noisy signal — Averaging

https://doi.org/10.1145/3297858.3304005

Type 3: Usage Control

How: is
e Measure per-app resource usage
e Find unfair allocation
e Limit offender

Cache example: Actual

Alita runtime system

LLC/BW
i__interference |

Online Interference Adaptive Interference

Identifier Eliminator

Fair

VM2 o VM1
If similarity (‘VMl ,) <0.8,
M3 3

then limit cache polluters to their fair share

Q. Chen et al., “Alita: Comprehensive Performance Isolation through Bias Resource Management for Public Clouds,” in SC20: link.

https://doi.org/10.1109/SC41405.2020.00036

ion?

llocat

Ir a

Do we really want a fa

Type 3: Usage Control (cont'd)

Type 3: Usage

Measurement CPU counters
Averaging Low Deployed in production, > 2 years:
Cluster components | Node only e 30k nodes (24 to 48 cores each)
5 Node-local e 250k VMs
e Node-loca)
o8 s Mesgure directly - authors, 2020 @Alibaba Cloud

— Fast reaction
— Easy to reason

Cons e Do we really want fair
allocation?

Q. Chen et al., “Alita: Comprehensive Performance Isolation through Bias Resource Management for Public Clouds,” in SC20: link.

https://doi.org/10.1109/SC41405.2020.00036

Summary: Mitigation Systems

Type 1: CPI Type 2: Latency Type 3: Usage
Measurement Cycles, Instructions App latency CPU counters
Averaging High Medium Low
Cluster components | Aggregator Node only Node only
Pros e Simple to measure e No profiling — Node-local e Node-local

e Control what you care e Measure directly
about — Fast, Easy to reason

Cons e Complex deployment e High developer effort e Do we really want fair

e Averaging — Slow reaction e Noisy signal — Averaging allocation?

e The three “categories” of published systems
e Many good ideas — general purpose
e Usage control (#3) is promising

e Cache and bandwidth crunch can increase tail latency 4x - 13x
e Reducing tail latency: costlfl, functionalityffd, response times§fH
e CPUs support monitoring and allocation, Linux has resctrl

e Systems that explicitly monitor and allocate: simple, fast reaction

Current Efforts

Kubernetes Deployment
Major Challenge
Collector architecture
Goals, Open Questions
Community Next Steps

Kubernetes Deployment

Measure resource usage

(memory bandwidth, cache) [measure

~
[measure

Fin lication (N, b
d ap.p Cato. S . - decide decide decide
exceeding their fair share gL N)

|

I

") (N ()
AdeSt allocations using — I allocate allocate allocate
Intel RDT / core pinning SRk gl g

|

| [D) S R 0 - - = = S D) S
L 3 oW
2
node node node

Traditional Observability: Too Slow!

Many collectors measure at 5 second intervals or more

Garbage collection:
e Differs by language, application, heap size
e Minor GC: “1-10 milliseconds, every 0.1-10 seconds”
e Major GC: “10-100 milliseconds, every 10-100 seconds

[medsure

(N\

decide
\§ J

7

()

allocate
& J

R -

5 seconds is too slow! e

Heavy user transaction:
e “500 milliseconds every 10s of seconds”

Why we need frequent measurements

Simulation: 8 applications, each noisy for 10-100 ms every second

Memory Bandwidth Utilization (10ms Granularity)

|

iy
o
o

~
w

Memory Bandwidth (%)
N w
w o

o

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Memory Bandwidth Utilization (1s Granularity)
100

75
50

25

Memory Bandwidth (%)

Time (s)

B Aepr [App2 [App3 [Apps [Apps appe [l App7 | Apps

Measuring at 1 millisecond intervals

|deally:

vCPU 1
vCPU 2
vCPU 3
vCPU 4

OO0 0O
OO0 OO0
ONONONO)
ONONONGO)
1T

In practice:

vCPU 1 O O
vCPU 2 O O
vCPU 3 O
vCPU 4

0P
@)
0459

0O
N4

Q: How much jitter are we going to have?

60

40

20

Timer Delay (us)

300

200

100

Sync Timer Benchmark Results
Points show mean delay, vertical lines show min-max range

[m7i: metal or xlarge?]

[m7i: metal or xlarge?]

W

50
Time (seconds)

75

100

* idle machines

Collector architecture

[\
alloc/free
fork, task_free }— RMIDs
\)

Y

—
—

process-RMID
. map collector
shared userspace
v memory

B e B
set current
RMIDs

O

sched_switch

J L J
h 4 read cache,
synchronous R
timers - memory
bandwidth

J -

%

Data helps develop detection algorithms

Collect per-RMID, per-millisecond:

Fo---------s e Cache utilization
[} | e Memory bandwidth
medsure 1 .
| e Cycles per Instruction (CPI)

—— e Cache misses

Goal: develop detection algorithms

How:

e (Calculate detector values on data
e Validate detection with CPI

R -

node

Synthetic workloads ok; looking for production data

Open Questions

e How to detect contention
(bandwidth saturation)

e Is 1 millisecond frequent enough?
(100 microseconds)

e Missing critical measurements?
(CPU frequency)

e \What if resctrl is unavailable?
(use perf counters)

Security and Privacy

e Schema contains only profiling data:
o Process names, PIDs

Container names (soon)

Cycles, instructions, LLC misses

Memory bandwidth, cache utilization

o O O

e No PIl captured

e Runs locally, produces parquet files
o No external communication

e Designing for:
o <0.1% in-line overhead
o < 1% userspace

e Even if more, might still make sense!

average p95 E average p95

40 ms 250 ms 42 ms 75 ms

Community Next Steps

) unvariance/collector

lan Off

Tarun Verghis
Darshan Dedhia
Nimrod Liberman

Call for:

e Contributors
o Collector
o Kubernetes benchmarks
e Data contributions
o Deploy in test/staging
o Advance detector development

Contact:
CNCF Slack: @Jonathan Perry
yonch@yonch.com

Set up time: yonch.com/collector

ty

[
Google 2019 8., |
Alibaba 2022 g3 around 50%
ot
0.4
Google 2011 \g) N around 35%

g

Facebook 2020

Twitter 2014 —

0.0

Time

\ \\‘\Users delwhe prod.uct and its per nanc

mailto:yonch@yonch.com
http://yonch.com/collector

