
All about rkt: Containers and
Kubernetes at CoreOS

Josh Wood
DocOps • CoreOS

@joshixisjosh9 | j@coreos.com | github.com/joshix

mailto:email@emailemail.com

CoreOS runs the world’s containers
We’re hiring: careers@coreos.com

sales@coreos.com

90+ Projects on GitHub, 1,000+ Contributors

coreos.com

Support plans, training and more

OPEN SOURCE ENTERPRISE

What’s it all about?

● Decouple the Application from the OS
○ Then you can upgrade them both -- independently
○ Containers: distribution and execution

● Automate OS upgrades - stay secure
● Orchestrate the result as a unified resource

○ Apps evolve -- are continuously deployed and scaled
● Democratize access to utility computing

○ #GIFEE

A CLI for running app
containers on Linux.

Focuses on:
● Security
● Modularity
● Standards/Compatibility

● December 2014 - v0.1.0
○ Prototype
○ Drive conversation (security, standards) and

competition (healthy OSS) in container
ecosystem

● February 2016 - v1.0.0
○ (already) used in production
○ API stability guarantees

● ~June 2016 - v1.8.0+
○ Packaged in Debian, Fedora, Arch, NixOS

rkt - a brief history

A CLI for running app
containers on Linux.

Focuses on:
● Not reinventing the wheel:
○Systemd - init
○Overlayfs
○CNI networking

A CLI for running app
containers on Linux.

Security:
● Signed images
● GPG detached sigs (ACI)
● DTC integration with TPM

A CLI for running app
containers on Linux.

Modularity: External
● “Fits in”
● Systemd or other init
● CNI and plugins

A CLI for running app
containers on Linux.

Modularity: Internal
● Stages of execution
● Fly, cgroups/ns, KVM vm
○SAME CONTAINER

A CLI for running app
containers on Linux.

Standards/Compatibility:
● Appc ACI format & sigs
● rkt runs Docker images
○OCI support as develops

rkt run: default stage1

● Isolates containers with the linux container
primitives (cgroups, ns), systemd-nspawn

● Container apps in a machine slice PID
namespace

● Manage with standard init tools: systemd
● Network isolation

rkt run: KVM isolation

● Isolates containers with the linux KVM
hypervisor

● Container apps in a machine slice PID
namespace

● Manage with standard init tools: systemd
● Network isolation

rkt fly

● Leverages the packaging, discovery,
distribution, and validation features of
rkt/containers

● Reduced isolation for privileged components
● chroot file system isolation only
● Has access to host-level mount, network, PID

namespaces
● Method for infra bootstrap in CoreOS Linux

rkt run: your stage1

● stage1 can be replaced with custom
implementations for security, performance,
architecture, …

● KVM stage1 originated with Intel
ClearContainers project and has seen at least
two alternate external implementations

$ rkt run quay.io/josh_wood/caddy
rkt: using image from local store for image name
coreos.com/rkt/stage1-coreos:0.15.0
rkt: using image from local store for image name
quay.io/josh_wood/caddy
[1161.330635] caddy[4]: Activating privacy
features... done.
[1161.333482] caddy[4]: :2015
$

rkt run (demo)

Cluster-level container
orchestration with #GIFEE
baked in.

Handles:
● Scheduling/Upgrades
● Failure recovery
● Scaling

Kubernetes

worker
kubelet

worker
kubelet

worker
kubelet

scheduler
& API

worker
kubelet

worker
kubelet

worker
kubelet

worker
kubelet

What is rkt in Kubernetes?

● “Rktnetes” was a nickname for the work in both
rkt and kubernetes

● rkt is container execution engine, runs cluster
work on nodes

● Add configuration to declare a node uses the
rkt engine, or that a pod executes with rkt

What is rkt in Kubernetes?

Why rkt in Kubernetes?

● Ensure cleanliness and modularity of the
critical interface between the orchestrator and
the execution engine

● Spur innovation through community effects
● In short: standards and interfaces

Why rkt in Kubernetes?

● Obtain unique rkt features
● Externally modular: Refine runtime interface:

CRI
● Internally modular: Pluggable “stage1”

isolation environments
● Run pods as software-isolated (cgroups, ns)
● Run pods as VMs with hypervisor isolation

What’s it all about?

● Decouple the Application from the OS
○ Then you can upgrade them both, and each
○ Containers: distribution and execution

● Automate OS upgrades
● Orchestrate the result as a unified resource

○ Apps evolve -- are continuously deployed and scaled
● Democratize access to utility computing

○ #GIFEE

Markers

● CRI - Kubernetes Container Runtime Interface
● CNI as Kubernetes network plugin model
● Docker refactor: runc, containerd
● Appc -> OCI: Standard for container images
● Ocid, et al: Let 1000 runtimes bloom?

○ ocid: Inherits runc: Pro and Con

See also:

● coreos.com/rkt
● github.com/opencontainers/image-spec
● kubernetes.io/docs/getting-started-guides/rkt/
● blog.kubernetes.io/2016/07/rktnetes-brings-rkt

-container-engine-to-Kubernetes.html

http://blog.kubernetes.io/2016/07/rktnetes-brings-rkt-container-engine-to-Kubernetes.html
http://blog.kubernetes.io/2016/07/rktnetes-brings-rkt-container-engine-to-Kubernetes.html
http://blog.kubernetes.io/2016/07/rktnetes-brings-rkt-container-engine-to-Kubernetes.html

See also:

● speakerdeck.com/joshix (these slides)

coreos.com/fest
@coreosfest

May 31 - June 1, 2017
San Francisco

Thank you!

Josh Wood
@joshixisjosh9 | j@coreos.com | github.com/joshix

We’re hiring! Email: careers@coreos.com Positions: coreos.com/ careers

mailto:email@emailemail.com

