
All Aboard!

Kubernetes Routes
Now Available for All Destinations

North/South and East/West
Presented by Jef Spaleta - Isovalent

This is a story about Gateway API

This talk is also sort of an exploration of popular music about trains
(check the qr codes in the talk)

What is the Gateway API?

Gateway API is a redesign of Kubernetes Ingress, informed by years of operational experience, to
address some short-comings in the original Ingress design.

Gateway API is the future of Ingress(North/South) and Service Mesh(East/West) routing.

The outcome of this work, in my opinion, is a much more durable set of routing abstractions that
Kubernetes cluster operators and cluster users will be able to make use of with less friction.

Kubernetes Ingress is still being maintained, but the the cool new features to support more uses
cases are happening in Gateway API

"Train kept a-rolling all night long"
- Train kept a-rolling (Aerosmith)

Imagine your cluster networking is a series of train routes

North/South Routes:
In/Out of your Kubernetes cluster

East/West Routes:
Between services in your cluster

Ref: https://www.wikihow.com/Play-Ticket-to-Ride

"Everybody loves a train in the distance"
- Train in the Distance (Paul Simon)

South:
Multiple application services

Serving portions of the
supported url paths requested
by clients.

North:
External Clients

Requesting a variety of urls
using multiple protocols

Traveling southbound into your cluster

"Leaving, leaving here on a southbound train this morning, oh yes I am early this morning"
- Nobody Knows The Way I Feel This Morning (Aretha Franklin)

South:
Multiple application services

Serving portions of the
supported url paths requested
by clients.

North:
External Clients

Requesting a variety of urls
using multiple protocols

Traveling southbound into your cluster

"Leaving, leaving here on a southbound train this morning, oh yes I am early this morning"
- Nobody Knows The Way I Feel This Morning (Aretha Franklin)

Let's talk about this thing

You need a bridge between the outside world and your cluster

Two prominent in-cluster solutions

Kubernetes Ingress:
This is the traditional choice and used heavily in production right now.

Gateway API:
Built on the experience of operating multiple Kubernetes Ingress implementations, addressing some of the
shortcomings in the original design to help scale better in multiple team orgs.

Both implement:
Reverse proxy functionality and loadbalancing capabilities inside your cluster.

The intent is for the Gateway API design to be more durable, verifiable, and extensible

"From the wrong side of the tracks, from the bad side of the town, that's where she grew up"
- The Wrong Side of the Tracks (Brian Setzer)

Traditional Kubernetes Ingress - A reverse proxy for your cluster

Ref: https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/

Works well when the user facing web service is a collection of
services inside a single K8s namespace.

Not designed to access cross-namespace services.

What happens when multiple teams working in their own
dedicated namespace need their own ingress?

What happens when teams working in different namespaces
need to depend on each other?

"Take the last train to Clarksville, and I'll meet you at the station"
- The Last Train to Clarksville (The Monkees)

https://kubernetes.io/docs/tasks/access-application-cluster/ingress-minikube/

The Problem - Who owns the Ingress resource?

The host field is a cluster operator concern!

What happens if ingresses in different namespaces
refer to the same host?

Needs a way to prevent rule collisions across teams.

The paths are an application developer concern!

Only application developers know what's needed here.

Ingresses can be in multiple namespaces

"Runaway train never going back. Wrong way on a one-way track."
- Runaway Train (Soul Asylum)

The Solution - Gateway API design driven by personas

Provisions cluster and provides external connectivity

Ensures the cluster is configured so it works well for all cluster users
May have broad cluster admin access

Controls a specific cluster application namespace
Access tightly restricted by cluster RBAC
Must coordinate with other teams or operators for changes outside of namespace

"And the train conductor says, take a break, driver 8. Driver 8, take a break, we can reach our destination..."
- Driver 8 (R. E. M.)

Key Idea: Scoping resources to personas

Kubernetes Ingress:
 Difficult to separate out
 day-to-day activities by persona

 Adds friction to app team self-servicing

Gateway API:
 Better separation of concerns
 through well scoped resources

 Lowers friction to app team self-servicing

"Mental wounds still screaming. Driving me insane,I'm going off the rails on a crazy train"
- Crazy Train (Ozzy Osbourne)

Traditional Kubernetes Ingress - Resource configuration crosses persona boundaries

Technical Details:

Ingress: The resource you as a cluster operator/user would
create with desired traffic routing rules

IngressClass: A resource with additional configuration for
the underlying controller(s)

IngressController: is the implementation responsible for
fulfilling the Ingress

Ingress Loadbalancing Service:
A service created by the controller to expose the Ingress to
the outside world, may need manual configuration

"I read my schedule but my train wasn't there. I re-read my ticket, it said going nowhere"
- Right Train, Wrong Track (Cyndi Lauper)

Gateway API design - Ingress resources better scoped to human roles

Gateway Controller: is the implementation responsible for fulfilling the gateway routing rules,
usually provisioned by

GatewayClass: A resource with additional configuration for the underlying controller(s)

Gateway: The resource you as a cluster operator would configure gateway loadbalancing
services, and set policy as to which application namespaces were allowed to attach routes

Gateway LoadBalancer Service:
A service created by most implementations to expose configured Gateway resources to the
outside world. Note: this may also be an externally provided LoadBalancer.

*Routes: The resources that can be attached to Gateways that define application specific
routing rules.

ReferenceGrants: The resources used by application teams to coordinate with each other
and allow cross-namespace routing.

"Train, train, comin' 'round, 'round the bend"
- Mystery Train (Elvis Presley)

The GatewayClass Resource: Multiple classes for different infrastructure scopes

The GatewayClass resources is meant to encode
infrastructure capabilities, and is extensible via parametersRef

Ref: https://cloud.google.com/kubernetes-engine/docs/concepts/gateway-api

"The work is hard in a railroad yard, Hey, hey, gotta' make it today to punch a time card. Workin' on the railroad."
- The Railroad (Grand Funk Railroad)

The Gateway Resource: The cluster operator's friend!

● Do you want a common shared gateway for all teams or do you want each namespace to have its
own gateway? Maybe something in-between?

● What protocols do you want the gateway to handle and what ports do you want to listen on?

● How will hostnames be matched to applications namespaces?

Questions for cluster operator to think about when setting up any Ingress:

The Gateway resources is meant to be used to encode cluster operations policy to answer
cluster operational questions like these

"Hold that train, conductor, please don't let that engineer start"
- Hold That Train (BB King)

The *Routes resources: What application developers actually care about

● Which URL paths do you want to route to which services

● Do you need to route to services maintained by other teams in namespaces you don't control?

● Do you need to reference any TLS certificates or other namespaced resources?

Questions for app developer teams

"Well, pistons keep on churnin' and the wheels go 'round and 'round"
- Long Runnin Train (The Doobie Brothers)

A Gateway and Ingress example comparison

The HTTPRoute Resource: Where the application specific routing rules live

Looks a lot like the Ingress rules...

Except both ParentRefs and BackendRefs can cross
namespace boundaries making several new use-cases
possible.

Note: *Refs in general are intended to be extensible and
its expected implementations will support a variety of
extended types in *Refs

Routes aren't just for the HTTP protocol!

The available protocols a Gateway controller implementation supports is intended to be extensible.

Each supported protocol will have an associated Route resource.

Routes in development as part of Gateway API:

● HTTPRoute: reached GA status in the Gateway API v1 release
● TLSRoute
● GRPCRoute
● TCPRoute
● UDPRoute

Ref: https://gateway-api.sigs.k8s.io/reference/spec/#gateway.networking.k8s.io%2fv1alpha2HTTPRoute

"I said, Now look a yonder coming, coming down that long railroad track"
- Long Black Train (Conway Twitty)

https://gateway-api.sigs.k8s.io/reference/spec/#gateway.networking.k8s.io%2fv1alpha2HTTPRoute

Ingress migration tool in development!

https://github.com/kubernetes-sigs/ingress2gateway

"Ingress2gateway helps translate Ingress and provider-specific resources (CRDs) to Gateway API
resources. Ingress2gateway is managed by the Gateway API SIG-Network subproject."

"I don't know what train I'm on. Won't you tell me, before I'm gone"
- Freight Train (Van Morrison)

https://github.com/kubernetes-sigs/ingress2gateway

Separation of concerns isn't the only concern with Kubernetes Ingress

Kubernetes Ingress implementations make heavy use
of implementation specific annotations.

Example: extending ingress to GRPC

Annotations are notoriously hard to validate.

Are you sure you are using the correct annotations to
match to features available in an Ingress controller
implementation?

Annotations are NOT portable across Ingress
implementations

Gateway API's design is meant to address this by
making sure there are resource based extension points
in key places (such as the *Refs)

Star Wars
Gateway API Demo

Episode IV
A New Ingress

You're part of the Empire's platform engineering team, and you need to roll out a centralized
landing request service that ALL the Imperial bases and secret superweapon application
developers can use.

It's become clear from past incidents that trying to keep individual landing request services
up-to-date with the current codes has been less than successful. Purging older codes
hasn't been top priority everywhere, and it's led to some unfortunate minor security
breaches at some orbital battle station platforms.

But you're gonna solve that by rolling out a central landing request service and using
Gateway API that individual teams can route to instead of their local landing service.

Demo Time

Made with: https://starwarsintrogenerator.com/

https://docs.google.com/file/d/1tncCowCeIeMqkj5EclUv3H_5aOaNbqQ8/preview

Terminal Time

Star Wars Gateway API Demo

Episode IV: A New Ingress

Set up a Shared Gateway API Gateway and HTTPRoutes for a common landing service

Let's break the demo actions down by persona

Installed Cilium
with Gateway API enabled

 Created the shared Gateway

Created the landing request service
Created the ReferenceGrants

Created the deathstar service
Created the deathstar HTTPRoute

Key demo takeaways

Gateways map host,port,address into listeners and set policy as to which namespaces can attach which
kind of routes.

*Routes express application specific routing rules, and can even reference services across namespace
boundaries.

ReferenceGrants are really powerful ways for developers to be explicit about intended use of resource
dependencies that cross namespace boundaries.

Note: its also possible to use ReferenceGrants to control access to namespaced certificate secrets for
TSLRoutes and HTTPSRoutes in a cross-namespace way.

The ReferenceGrant resource: Makes cross-namespace dependencies explicit

● Do you want other application teams working (and constrained by RBAC) in other namespaces to
be able to route to your services?

● What about other resources (like TLS certs?)

● How do you know which other teams are routing to your team's services or depending on your TLS
certs?

Questions for app developer teams

""People all over the world (everybody) join hands (join) start a love train, love train
- Love Train (The O'Jays)

Example of ReferenceGrant for TLS Certificate Secret

Gateway needs TLS cert in different namespace to perform TLS termination
Perhaps there is a separate security persona in charge of the certs?

Demo Time

Star Wars
Gateway API Demo

Episode V

The Traffic Control Team Strikes Back

The Traffic Control team has introduce a new version of the landing request service.
You'r job is to update the Deathstar's HTTPRoute to split traffic between multiple versions of the
Traffic Control team's landing request service

Made with: https://starwarsintrogenerator.com/

https://docs.google.com/file/d/1JunHP0dkcyypUBVF4xhPGtkr97HoqAyD/preview

Terminal Time

Key demo takeaways

Gateways are cluster operational: They must be configured correctly to avoid having multiple teams
disrupting each other, regardless if they are in a single namespace or not. Misconfigured gateways (like
Ingress) can disrupt multiple teams.

Shared Gateways can potentially help protect teams from disrupting each by isolating teams through the
use of multiple listeners.

The *Routes attached to the shared Gateway are application specific policy. If they are misconfigured
they only impact the application team(s) allowed to attach to a given Gateway listener.

Using multiple weighted BackendRefs in HTTPRoute rules provides loadbalancer-like behavior with
fail-over protection.

Gateway API North/South Recap

Gateway API reached v1.0 in the past year with support for:
● Gateway
● GatewayClass
● HTTPRoute

This forms the initial basis for being the next generation of Kubernetes Ingress. But its just the start!
There are many Gateway enhancement proposals (GEPs) being worked on by the community.

If you're interested by what you've seen so far, you should keep tabs on the in-progress GEPs, and see
how the community is working to build on this foundation.

Some experimental GEPs of note

Ref: https://github.com/orgs/kubernetes-sigs/projects/20/views/1?filterQuery=status%3AExperimental+

● Route Port Matching #957

● Mesh Service Binding #1294 -> East/West routing!

● GatewayClass status supported features #2162

The GEP lifecycle

"I hear the train a comin' It's rolling round the bend"
- Folsom Prison Blues (Jonny Cash)

https://github.com/orgs/kubernetes-sigs/projects/20/views/1?filterQuery=status%3AExperimental+
https://github.com/kubernetes-sigs/gateway-api/issues/957
https://github.com/kubernetes-sigs/gateway-api/issues/1294
https://github.com/kubernetes-sigs/gateway-api/issues/2162

 Can Gateway API handle East/West routes? Yes!

Made possible by a series of GEPs introduced by the "GAMMA Initative"

Implemented by extending *Route ParentRef fields
to allow kind: Service instead of assuming kind: Gateway

Makes it possible to use *Route resources to instruct service mesh controllers to route traffic between
service facets inside your cluster

Note: This is experimental/beta feature in several service mesh controllers
(kuma, linkerd, istio) and is under active development.

Note: Planned to be included in Cilium as well
 Ref: https://github.com/cilium/cilium/issues/22512

"Roll down your window, brother, shout out my name You're on route 66, on a blacktop train"
- Black Top Train (Ellis Paul)

East/West Routes - When a cluster service calls another

Cluster Mesh adds East/West routing flexibility like a gateway!

What is a Kubernetes Service really?

A Kubernetes Service is a construct that connects frontend endpoint(s) with a set of backend endpoints

The backends are an explicit facet of a Service resource and are usually pods matching some labeling
criteria.

The frontends are an implicit facet of a Service resource, controlled by the Service type:

● For ClusterIP services the frontend endpoints are given IP addresses routable only inside the
cluster, and a cluster-internal DNS record is created for service discovery.

● For LoadBalancer services the frontend endpoints are additionally given an externally routable IP
address.

● For NodePort services the frontend endpoints are additionally assigned a port on the host's
externally addressable interface.

Note 1: Headless services are effectively frontend facet with no backend facet. Neither Gateway nor
Service ParentRefs work with Headless services.

1

Service facets are fascinating

When referencing a Gateway as the
ParentRef in an HTTPRoute, you are
essentially ignoring the frontend facet of
the HTTPRoute BackendRef Services.

Service facets are fascinating

When referencing a ParentRef Service in an HTTPRoute, you are
essentially ignoring the backend facet of that ParentRef Service, and
telling the Service Mesh controller to use the frontend of HTTPRoute
BackendRef Services instead.

Demo Time

Made with: https://starwarsintrogenerator.com/

https://docs.google.com/file/d/1wL8qPOfyIc77eyJkBpP55L1RxLBIVtvp/preview

Terminal Time

Star Wars
Gateway API Demo

Episode VI

The Return of the Service Mesh

Use Linkerd's experimental support for Service ParentRef targets in HTTPRoutes for
cross-namespace routing between micro-services.

Key demo takeaway

Gateway API *Route objects are well scoped for micro-service routing policy.

Allows application teams to build and control explicit policy around how backend services interconnect.

Individual consumer service teams, can build and implement *Route resources without disrupting other
consumers.

Producer service teams, can build and implement *Route resources that control all, or some internal
clients as needed.

Parting thought: *Routes are durable and expressive abstraction for routing policy

And the future is now!!!!!

I think the GAMMA Initative's adaptation of *Routes as Service Mesh policy proves the Gateway API
decisions are heading in the right direction.

Consolidating around *Routes as a standard way to express routing policy between services has huge
benefits.

Introduction of ReferenceGrants as a sort of contract between teams working in different namespaces,
makes dependencies between teams more explicit, which I think serves as an interesting model for
resource access across all of Kubernetes more broadly.

I think this design really powerful for both application teams and cluster operators and makes it
easier and safer for teams to self-service application routing.

Thanks for coming to my talk!

Song Playlist: https://isogo.to/scale21x-playlist

Here are some additional learning resources:

Kubernetes Gateway API SIG resources:
https://gateway-api.sigs.k8s.io/

Demo Git Repo:
https://isogo.to/scale21x-gateway-demos

Cilium Gateway API Features (North/South):
https://docs.cilium.io/en/v1.15/network/servicemesh/gateway-api/gateway-api/

Linkerd Gateway API Features (East/West):
https://linkerd.io/2.15/features/httproute/

https://isogo.to/scale21x-playlist
https://gateway-api.sigs.k8s.io/
https://isogo.to/scale21x-gateway-demos
https://docs.cilium.io/en/latest/network/servicemesh/gateway-api/gateway-api/
https://linkerd.io/2.15/features/httproute/

