AI with Your Own Data

Nuri Halperin | https://linkedin.com/in/nurih
There is no AI, only math
It's all in the process
What Are We After?

1. User asks question
2. Machine answers:
 - Using MY data
 - Using MY language
 - Responds like an expert
 - Intelligent, infers, less-than-perfect matching
What We Want

Bob

Ask a Question

Where did I put my trousers?

Return Intelligent Answer

You are wearing them on your head.

© 2024 Nuri Halperin | Plus N Consulting
Why Not Search Engine?

• Keyword based
• Synonyms
• Stemming

1. ✔ User asks question
2. Machine answers:
 • ✔ Using MY data
 • ☢ Using MY language
 • ☢ Responds like an expert
 • ☢ Intelligent, infers, less-than-perfect matching
What is RAG?

Retrieval
- Own data

Augmented
- Prompt Engineering

Generation
- Human-Like Response
What do Models do?

• Compute "meaning" by "nearness" of vectors – similarity.
• "Completion"
How are models built?

- Tokenize input text/images into numbers
- Create vectors of these numbers
- Encoded: string -> token sequence -> math::vector
- Decoded: math::vector -> token sequence -> string
- Train model, then save it
Training a Model

- Action of mutating interior vectors by changing formula coefficients until output is satisfactory
- Iterative, expensive to compute, random element
- We can use pre-trained models (Yippie!)
Vector Comparison

• Vectors can be compared in N-space

• Comparison Types
 • L2 – Euclidian Distance
 • Cosine
 • Dot Product

Demo uses Cosine
Vector Comparison Methods

- **L2 Euclidian**: Distance
- **Cosine**: Angle, Direction
- **Dot Product**: Magnitude, Direction

© 2024 Nuri Halperin | Plus N Consulting
"Vector Search"

TL;DR: Specialized DB index for vector similarity
Vector Search Implementation

KNN/ANN:
- K-Nearest Neighbor
- Approximate-Nearest Neighbor

HNSW: Hierarchical Navigable Small Worlds

Implementation of ANN / KNN

Given a vector query, returns data associated to vectors that are "near" it
Pieces of the Puzzle

- **Token**: A number representing an input element
- **Tokenizer**: \(t(\text{text}) \rightarrow \text{"token list" the "vocabulary of inputs"} \)
- **Embedder**: \(e(\text{tokens}) \rightarrow \text{"embedding"} \)
- **Model**:
 - Encode: \(f(\text{text}) \rightarrow \text{"vector"} \)
 - Decode: \(f(\text{vector}) \rightarrow \text{"text"} \)
- **Training**: The act of making the fidelity of \(\text{Decode}(\text{Encode}(<\text{some-value}>)) \) as similar as possible.
Demo Time!

Squee!
Thank You!
Stay Connected

Nuri Halperin
+N Consulting, Inc.
nuri@plusnconsulting.com
https://linkedin.com/in/nurih
Consulting, Training, Inspiring

© 2024 Nuri Halperin | Plus N Consulting