3D Printing Antennas and Other Dark Arts

Karen Rucker

Yes You Probably Know More Than Me

- B.S in Electrical Engineering, 2019
- Antenna Design Engineer in Aerospace, May 2019 present
- HAM licensed since 2015

KAREN REALLY IS AN ENGINEER
KAREN RUCKER A REAL ENGINEER
LEANIN' TREE.

Designing Stuff

What's an Antenna, Anyway?

"a means for radiating or receiving radio waves" - IEEE Standard Definitions of Terms for Antennas

The "I Totally Didn't Forget" 6 m receiver antenna

Bad Antenna, Bad!

Frequency&

Gain&

Polarization&

Pattern&

Bandwidth&

Impedance Match

What Kind of Idiot Recommends Tutorials for a Software You Don't Have?

Design Resources That Have Helped Me

Cool* Project I

How Would You 3D Print an Antenna in Space? A Look at My Terrible No Good Undergrad Research

What if I Did What They Did... But Worse?

3D Printing Your Own Antennas

"dichloromethane is especially poisonous. It has historically been the key ingredient in common paint stripper, but is being phased out due to its toxicity when used for DIY home projects."

It Works, and You Can Do It!

3D printable model

15 dBi standard gain horn

Print Technology: FDM

Infill: 10%

Pattern: standard diamond fill

The Simulation

3D Model, E Field magnitude

Return Loss

Cool* Project II

How to Talk to Aliens

Breakthrough Listen / SETI Institute RF Hackathon

Breakthrough Listen, UC Berkeley SETI Research Center, & the SETI Institute invited applications from

- RF professionals
- machine learning experts
- GNU Radio open source community

to participate in a three-day community gathering & technical hackathon at the Allen Telescope Array (ATA).

Hackathon Goals/Topics

- Detection and characterization of radio signals, including deep learning approaches.
- Data capture, management, and quality assessment for radio systems.
- RF front-end and antenna status and health management & assessment.
- GNU Radio-based tools for real-time and offline processing at the ATA and other radio astronomy facilities.
- Tools & standards development for open source signal data formats (e.g., SigMF), and transitioning to those formats from existing bespoke formats.
- Enabling citizen science and collaboration with the broader open source community.

ATA Background

- 42 offset Gregorian telescopes at Hat Creek Radio Observatory in California
 - plans to grow to 350+
- First of a new class of LNSD (large number of antennas, small diameter) cm-wave interferometers
- Began operation in October 2007

Totally Not a Death Ray

Triangular pyramidal log-periodic antenna (PLPA)

- Frequency-independent behaviour -> ideal for broadband
- 2 antennas -> dual polarisation
- Original design:
 - Performs from 0.5 to 11.2 GHz
- Improved design:
 - Shortened feed structure fully contained in a vacuum radome, cooled to ~65K
 - Reduced noise factor by 12
 - Performs from 0.9 to 18 GHz
 - difficult to find LNA w/ similar range.

Issues

- Mostly mechanical
 - Cryo breaking
 - Circuit boards/soldering breaking
- Hot and cold loading difficulties
- Have had to splice new SC ends on a few antennas due to high signal loss.
- Only about half of ATA is the new feed style

Antenna Health working group

Team:

- Michelle Thompson, Open Research Institute
- Derek Kozel GNU Radio, Cardiff University
- Katie Frey- Harvard & Smithsonian Library of the Center for Astrophysics
- Karen Rucker

Tasks:

- Multi-sensor data fusion
- Data collection code clean-up
- GNU Radio processing block

Antenna Health example

```
"cryotemp": {
160
                 "resourceT": "Attribute",
161
162
                 "dataT": "float",
                 "unitT": "K",
163
164
                 "thresholdT": {
               "type": "floatrange",
165
               "RANGE" : [[0.0,59.99],
166
167
                                 [60.0,65.0],
168
                                 [65.01,75.0],
169
                                 [75.01,150.0],
                                 [150.01,400.0]]
170
171
           },
172
                 "parentT": "ant"
173
174
             },
```

Almost The End

Resources/Links

- DIY 137 MHz WX SAT V-dipole antenna
- Leap Australia <u>Rectangular Waveguide ANSYS HFSS</u>
- Radio Mobile Freeware by VE2DBE
- Antenna Test Lab, <u>3D Printing Your Own Antennas</u>
- SETI <u>Allen Telescope Array Overview</u>
- Hacking SETI by Steve Croft
- <u>Primary Beam and Dish Surface Characterization at the Allen Telescope Array</u> by Radio Holography

Summary

- Antennas can be hard
 - There's no shaming in buying one!
 - Be patient, not intimidated
- The connector is always* the problem
 - *not always
- Even professionals have to tune, tune, tune
- Antennas can be fun!

karen.rucker4@gmail.com

