
iocost & resctl-bench

Tejun Heo



What is a cgroup IO controller?

- What is cgroup?
- A hierarchical grouping of processes in 

a system.
- What is IO?

- Here, it means block IOs - the things 
that get written to and read from 
secondary storage devices like an SSD.

- What is controller?
- A mechanism which attaches to the 

cgroup hierarchy and divvies up 
available system resources.



Why is IO control challenging?

- Conventionally available metrics are not descriptive enough
- Bandwidth, IOPS, latencies interact in non-trivial ways which is difficult to describe succinctly.
- Makes single-metric-based control difficult to configure. e.g. A given bandwidth config can be 

too high and too low at the same time for blk-throtl.
- SSDs can be very erratic

- Periodic or unpredictable slowdowns or even stalls are not uncommon.
- Difficult to tell much from specs or simple benchmarks.

- SSDs can be very performant
- Can easily reach hundreds of thousands of operations per second. Can’t do anything too 

expensive.
- Intertwined with the rest of the system

- Priority inversions.



How does iocost solve the challenges?

- Each IO is assigned a cost according to a model
- Currently linear model derived from offline benchmark is used.
- Can be extended.

- Planning path allocates resources to different cgroups according to weights
- Easy to configure across different classes of devices and workloads.
- The slower and complex path which runs periodically at millisecond timescale.

- Issue path controls IOs in a cheap and scalable way
- Control decisions are local to each cgroup without any cross-cgroup communication.

- Integrates with FS and MM to avoid priority inversions
- Do first, charge later.





Does it work? (750K IOPS rand read)



Does it work? (2:1 latency sensitive random reads)



Deployment at Meta



Deployment at Meta



The parameters

- iocost works well as long as it’s configured well

- but that’s a lot of numbers
- The kernel tree has tools/cgroup/iocost_coef_gen.py script which does simple fio 

benchmarks.
- But didn’t you say devices are erratic and simple metrics don’t capture the behavior well?



resctl-bench

- A scenario based benchmark which observes end-to-end behavior.
- A latency sensitive and resource intensive main workload.
- A memory and IO intensive adversarial workload.
- Can you isolate?

- resctl-bench repeats the above scenario at different throttling point
- Is isolation good enough at this throttling point?

- and produces a detailed report on the observed behavior and suggested 
parameters







That sounds like a lot

- It is but we just need a few results per SSD model.
- We can collect and build a database.
- https://github.com/iocost-benchmark/iocost-benchmarks

https://github.com/iocost-benchmark/iocost-benchmarks


Running resctl-bench

- Requires btrfs filesystem with swap on it.
- Can run on non-root device but better to run on root filesystem.
- Installable images are generated in 

https://github.com/iocost-benchmark/resctl-demo-image-recipe
- Takes ~6 hours. Can be interrupted and restarted.
- Needs a few results to be merged for good graph fitting.

https://github.com/iocost-benchmark/resctl-demo-image-recipe


















6 hours later















Links

- iocost paper
- https://www.cs.cmu.edu/~dskarlat/publications/iocost_asplos22.pdf

- resctl-demo and resctl-bench
- https://github.com/facebookexperimental/resctl-demo

- resctl-bench result repository
- https://github.com/iocost-benchmark/iocost-benchmarks

https://www.cs.cmu.edu/~dskarlat/publications/iocost_asplos22.pdf
https://github.com/facebookexperimental/resctl-demo
https://github.com/iocost-benchmark/iocost-benchmarks



