
Scaling PostgreSQL
A Developer’s Guide
Tech Talk @ EMUMBA 

Sep 27, 2023



Abstract

● PostgreSQL adoption is exploding and the move to the cloud is fueling it
● The difference between kicking things off and scaling in production
● The four areas of focus for scaling PostgreSQL

○ Query & SQL Optimization
○ Performance Features
○ Architectural Improvements
○ Parameter Tuning







So - what do you do when 
you need to scale your 
database in the cloud?



Scale by Credit Card! 



Well, not really … 
You are only delaying the inevitable



You tested your application here …



… and this is what production looks like



There is no magic button or setting … 



Scaling 
PostgreSQL

A Developer’s Guide

● Query & SQL Optimization
● Performance Features
● Architectural Improvements
● Parameter Tuning



Query & SQL Optimization



pg_stat_statements is your friend

● PostgreSQL extension, included in distribution and off by default 
● Logs statistics about SQL statements
● Easy stats to watch out for

○ Long running (mean_exec_time )
○ Most frequent (calls)
○ Standard deviation in execution time (stddev_exec_time )
○ I/O intensive (blk_read_time , blk_write_time )



Explain plan is your friend



Watch out for locks! 

Session 2

UPDATE foo SET … WHERE id = 1;

(waits)

Session 1

BEGIN; 

UPDATE foo SET … WHERE id = 1;

UPDATE foo SET … WHERE id = 2;

UPDATE foo SET … WHERE id = 3;

COMMIT;
Locks



Performance Features



Indexes

● B-Tree - default index
● Hash - equality checks
● Composite - multi column
● Partial - conditional index on subset of data
● Covering - includes an additional column
● BRIN (block range index) - space efficient for sorted tables



Indexes - Not a one-size-fits-all!

● You need all or most of the data any ways
● Your workload is WRITE or UPDATE heavy with little READs
● ‘Over’ indexing can cause data bloat
● Your table is too small 



Many performance features ‘just work’

A few examples … 

● Parallel queries
● Heap-Only Tuples (HOT)
● Incremental sort
● Autovacuum 



Architectural Improvements



Load Balancing

Primary

Standby 1 Standby 2

Application

Write

Read

Replicate

Application



Load Balanced 3-node Cluster
transaction type: <builtin: select only>

scaling factor: 10

query mode: simple

number of clients: 25

number of threads: 1

maximum number of tries: 1

duration: 60 s

number of transactions actually processed: 24885

number of failed transactions: 0 (0.000%)

latency average = 51.449 ms

initial connection time = 8896.110 ms

tps = 485.918972 (without initial connection time)

Single Node SELECTs
transaction type: <builtin: select only>

scaling factor: 10

query mode: simple

number of clients: 25

number of threads: 1

maximum number of tries: 1

duration: 60 s

number of transactions actually processed: 19139

number of failed transactions: 0 (0.000%)

latency average = 67.215 ms

initial connection time = 8620.897 ms

tps = 371.939402 (without initial connection time)

Load Balancing



Partitioning

Application

Jan Feb Mar
Apr May Jun
Jul Aug Sep
Oct Nov Dec

Application

Q1 Q2 Q3 Q4



Partitioning

Application

Jan Feb Mar
Apr May Jun
Jul Aug Sep
Oct Nov Dec

Application

Q1 Q2 Q3 Q4

select * from foo where month = ‘Aug’ select * from foo where month = ‘Aug’



Parameter Tuning



Easily tuned database parameters

● Most defaults are good enough! 
● shared_buffers

○ Cache for frequently accessed data
○ Default is 128MB
○ Recommended is between 25% and 40% of system memory

● wal_buffers
○ Shared memory not yet written to disk
○ Default is 3% of shared_buffers
○ A value of up to 16MB can improve performance in high concurrency commits 

● work_mem
○ Memory available for a query operation
○ Default is 4MB
○ High I/O activity for a query is an indicator that an increase in work_mem can help 
○ Each parallel operation is allowed to use memory up to this value 



Easily tuned database parameters

● maintenance_work_mem
○ Memory used by maintenance operations like VACUUM and ANALYZE 
○ Default is 64MB
○ Higher values can improve maintenance performance
○ Each worker is allowed to use up to this value

● effective_cache_size
○ Value of effective disk cache to be used by query planner
○ Not an allocation!
○ Default is 4GB 
○ Higher values encourage index scans 

● random_page_cost
○ Value of non-sequential disk page access cost
○ Not an allocation!
○ Default is 4.0
○ Lower values encourage index scans 



Conclusion
Database performance involves a lot of 
variables. Optimize how data is 
accessed before scaling by credit card!



Questions?

pg_umair


