Scaling PostgreSQL /

A Developer’s Guide

Tech Talk @ EMUMBA
Sep 27,2023

STTRMATICS /

STURMATICS /

Abstract

e PostgreSQL adoption is exploding and the move to the cloud is fueling it
e The difference between kicking things off and scaling in production

e The four areas of focus for scaling PostgreSQL
o Query & SQL Optimization
o Performance Features
o Architectural Improvements
o Parameter Tuning

Popularity

n

40 -

¥
)
&)

14’
3)8

STURMATICS /

f

2019

\ =7 L] c
: 2 S,
16.5 .
"4 1261 114
\ 8
: ~O
| l l |
T T T 1
2020 2021 2022 2023

@ rosgesal. @ oOrace @ mysaL @ MssaLSever @ MongoDB

STURMATICS

2022 DBMS Market Snapshot

Top 3 Cloud Revenue ($B) DBMS Subsegments ($B)
$ 80% of Cloud Market $71
1440 ot e = KN
AWS Microsoft Google RDBMS Non-RDBMS Pre-RDBMS

$11B Gain

Top 10 (Top 5 = 81% of Market) Fastest Growing

AWS New #1! $23,023 | Snowflake 83.2%

Microsoft $21,970 | Cockroach Labs 81.5%

Oracle $16,875 | Databricks 76.3%

Google $7,616 | EnterpriseDB 58.3%

$ 50 . 3 B IBM $4,587 | TigerGraph 49.3%
55%) Of Market SAP $3,611 | MongoDB 48.7%
98% of 2022 Growth Alibaba $1,939 | Google 46.2%
Huawei $1,251 | Tencent 41.3%

Snowflake New! $1,223 | Redis 40.7%

MongoDB New! $1,205 | Singlestore 40.6%

T s i Gartner

STWRMATICS /

So - what do you do when
you need to scale your
database in the cloud?

STURMATICS /

Scale by Credit Card!

STURMATICS /

Well, not really ...
You are only delaying the inevitable

—/

STURMATICS /

You tested your application here ...

STURMATICS /

.. and this is what production looks like

STURMATICS /

There is no magic button or setting ...

Make everything OK

Scaling
PostgreSQL

A Developer’'s Guide

STURMATICS /

Query & SQL Optimization
Performance Features
Architectural Improvements
Parameter Tuning

Query & SQL Optimization
STTRMATICS /

STURMATICS /

pg_stat_statements is your friend

e PostgreSQL extension, included in distribution and off by default
e |Logs statistics about SQL statements

e FEasy stats to watch out for
o Longrunning (mean exec time)
o Most frequent (calls)
o Standard deviation in execution time (stddev_exec time)
o 1/Ointensive (blk read time,blk write time)

STURMATICS

Explain plan is your friend

QUERY PLAN

Unique (cost=22.67..22.70 rows=2 width=44) (actual time=0.066..0.067 rows=1 loops=1)
-> Sort (cost=22.67..22.68 rows=3 width=44) (actual time=0.065..0.065 rows=2 loops=1)
Sort Key: la.account_id, la.external_entity_id, la.created_at
Sort Method: quicksort Memory: 25kB
Hash Join (cost=10.66..22.65 rows=3 width=44) (actual time=0.048..0.052 rows=2 loops=1)
Hash Cond: (la.loan_application_status_id = loan_application_statuses.loan_application_status_id)
ions la (cost=9.21..21.16 rows=3 width=36) (actual time=0.022..0.025 rows=2 loops=1)
acco ('{7812011}'::integer(])) OR (external_entity_id = ANY ('{NULL}'::integer[])))
-> Bitlapor (mst=9.21..9.21 rows=3 width=0) (actual time=0.016..0.016 rows=0 loops=1)
-> Bitmap Index Scan on index_loan applications on account id (cost=0.00..4.62 rows=3 width=0) (actual time=0.014..0.014 rows=2 loops=1)

-> Bitmap Index Scan on index_loan_applications_on_external_entity id (cost=0.00..4.60 rows=1 width=0) (actual time=0.001..04001 rows=0 loops=1)
Index Cond: (external_entity_id = ANY ('{NULL}'::integer[]))
-> Hash (cost=1.20..1.20 rows=20 width=16) (actual time=0.016..0.016 rows=20 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 1kB
-> Seq Scan on loan_application_statuses (cost=0.00..1.20 rows=20 width=16) (actual time=0.004..0.007 rows=20 loops=1)
'\)mtile: 0.122 ms
s

o
)

% |Node: What is happening in this step? Feed result to parent Node.

—> Relation: What is it happening on? Table or result of child Node?

-[Cost: Relatively how expensive is this step?

Modifier: Tweak result before handoff.

Rows: How many rows will be returned by this Node. €
Loops: How many times will this step be executed.

A

STURMATICS /

Watch out for locks!

Session 1 Session 2
BEGIN; UPDATE foo SET .. WHERE id = 1;
UPDATE foo SET .. WHERE id = 1; (waits)

UPDATE foo SET .. WHERE 1d = 2;

UPDATE foo SET .. WHERE id = 3;

COMMIT; v

Performance Features
STTYRMATICS /

STURMATICS /

Indexes

B-Tree - default index

Hash - equality checks

Composite - multi column

Partial - conditional index on subset of data

Covering - includes an additional column

BRIN (block range index) - space efficient for sorted tables

STURMATICS /

Indexes - Not a one-size-fits-all!

You need all or most of the data any ways

Your workload is WRITE or UPDATE heavy with little READs
‘Over’ indexing can cause data bloat

Your table is too small

STURMATICS /

Many performance features ‘just work’

A few examples ...

Parallel queries
Heap-Only Tuples (HOT)
Incremental sort
Autovacuum

Architectural Improvements
STPRMATICS /

STURMATICS /

Load Balancing

Application Application

Primary

@ Read

Standby 1 Standby 2 ‘ Replicate

Load Balancing

Single Node SELECTs

transaction type: <builtin: select only>
scaling factor: 10

query mode: simple

number of clients: 25

number of threads: 1

maximum number of tries: 1

duration: 60 s

number of transactions actually processed: 19139
number of failed transactions: 0 (0.000%)
latency average = 67.215 ms

initial connection time = 8620.897 ms

tps = 371.939402 (without initial connection time)

STURMATICS

Load Balanced 3-node Cluster

transaction type: <builtin: select only>
scaling factor: 10

query mode: simple

number of clients: 25

number of threads: 1

maximum number of tries: 1

duration: 60 s

number of transactions actually processed: 24885
number of failed transactions: 0 (0.000%)
latency average = 51.449 ms

initial connection time = 8896.110 ms

tps = 485.918972 (without initial connection time)

STURMATICS /

Partitioning

Application Application

Jan Feb Mar
Apr May Jun
Jul Aug Sep
Oct Nov Dec

-

Q1 Q2 Q3 Q4

Partitioning

STURMATICS /

select * from foo where month =

\Augl

select * from foo where month = ‘Aug’

Appl cation

Application

Jan Feb Mar
Apr May Jun
Jul Aug Sep
Oct Nov Dec

-

Parameter Tuning
STORMATICS /

STURMATICS /

Easily tuned database parameters

e Most defaults are good enough!

shared_buffers
o Cache for frequently accessed data
o Defaultis 128MB
o Recommended is between 25% and 40% of system memory
e wal_buffers
o Shared memory not yet written to disk
o Defaultis 3% of shared_buffers
o A value of up to 1T6MB can improve performance in high concurrency commits
e work_mem
o Memory available for a query operation
o Defaultis 4MB
o High I/0 activity for a query is an indicator that an increase in work_mem can help
o Each parallel operation is allowed to use memory up to this value

STURMATICS /

Easily tuned database parameters

e maintenance_work_mem
o Memory used by maintenance operations like VACUUM and ANALYZE
o Defaultis 64MB
o Higher values can improve maintenance performance
o Each worker is allowed to use up to this value
e effective_cache_size
o Value of effective disk cache to be used by query planner
o Not an allocation!
o Defaultis 4GB
o Higher values encourage index scans
e random_page_cost
o Value of non-sequential disk page access cost
o Not an allocation!
o Defaultis 4.0
o Lower values encourage index scans

STWRMATICS /

Conclusion

Database performance involves a lot of
variables. Optimize how data is
accessed before scaling by credit card!

=\

Questions?

i

STURMATICS /

3y

KEEP

CALM

AND

USE
POSTGRES

