Should You Bring Kubernetes on Your Edge Roadtrip?

Frédéric Desbiens
Program Manager — IoT and Edge Computing
@BlueberryCoder

July 30, 2022
Should You Bring Kubernetes at the Edge?

Maybe?
Agenda

➢ A Few Definitions
➢ Edge Computing Workloads
➢ Kubernetes at the Edge
➢ Our Vision: EdgeOps
What is the Cloud?

On-demand availability of resources

- Homogeneous
- Large scale
- Centralized
What is the Edge?

Resources anywhere and everywhere

- Distributed
- Small scale
- Heterogeneous
Edge computing provides compute, networking and storage capabilities at the border of the network, closer to the source of the data, while maintaining the elasticity and consumption-based pricing model of the Cloud.
Cloud Native

- DevOps
- Agile
- Microservices
- Containers
- Repair / Repave
- Rotate
The Challenges Edge Computing Addresses

- Latency
- Bandwidth
- Resiliency
- Data Sovereignty

Devices → + → Cloud
What Makes Edge Native Different

- The network will degrade or fail
- Optimize for size and power
- Zero Trust
Edge Computing

Workloads
Edge-To-Cloud: A Continuum
One Continuum; Three Planes

Data
Software components being deployed

Control
Control the applications or the infrastructure
Real-time monitoring

Management
Manage the applications or the infrastructure
Device configuration
Top Edge Computing Workloads

Edge Gateways
- Artificial Intelligence: 21%
- Control Logic: 19%
- Data Analytics: 13%
- Sensor Fusion: 12%

Edge Servers
- Artificial Intelligence: 21%
- Control Logic: 17%
- Data Analytics: 16%
- Sensor Fusion: 10%
Top Edge Computing Artifacts Deployed for IoT Solutions

- **Edge Gateways**
 - Container Images: 19%
 - Native Binary: 17%
 - Script Files: 13%
 - Serverless Function: 12%
 - Virtual Images: 22%

- **Edge Servers**
 - Container Images: 30%
 - Native Binary: 15%
 - Script Files: 22%
 - Serverless Function: 17%
 - Virtual Images: 12%
Types of Operating Systems

- **Time-Sharing**
 - Maximize hardware utilization

- **Real-Time**
 - Guarantee latency
Kubernetes
At The Edge
Kubernetes at the Edge

Source: G. Baldoni, L. Cominardi, M. Groshev, A. De la Oliva and A. Corsaro, "Managing the far-Edge: are today’s centralized solutions a good fit?"
A wider Set of Alternatives

<table>
<thead>
<tr>
<th>Platform</th>
<th>Cloud Managed</th>
<th>Edge Only</th>
<th>K8s integration</th>
<th>Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Outposts</td>
<td>Yes</td>
<td>No</td>
<td>Offers K8s</td>
<td>Containers, VMs</td>
</tr>
<tr>
<td>Eclipse fog05</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Binaries, Containers, VMs</td>
</tr>
<tr>
<td>Eclipse ioFog</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Containers</td>
</tr>
<tr>
<td>Eclipse Kanto</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Containers</td>
</tr>
<tr>
<td>EdgeX Foundry</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>IoT</td>
</tr>
<tr>
<td>Fledge</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Industry 4.0</td>
</tr>
<tr>
<td>K3s</td>
<td>No</td>
<td>Yes</td>
<td>Is K8s</td>
<td>Containers</td>
</tr>
<tr>
<td>KubeEdge</td>
<td>Yes</td>
<td>Possible</td>
<td>Is K8s</td>
<td>Containers</td>
</tr>
<tr>
<td>OpenHorizon</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Containers</td>
</tr>
</tbody>
</table>

Adapted from: G. Baldoni, L. Cominardi, M. Groshev, A. De la Oliva and A. Corsaro, "Managing the far-Edge: are today’s centralized solutions a good fit?".
The modern car is a datacenter

Should it run Kubernetes?
Use case: Automotive

Which of those would you run in containers?
The modern factory is a datacenter

Should it run Kubernetes?
Use Case: Industrial Automation

Source: Eclipse BaSyx project documentation
The decision process involves a fragment of the whole data set

The error function cannot always ask for outside help

Optimization is influenced by local conditions
Architecture Considerations

> **How predictable should the latency of your system be?**
 * Mission-critical systems have real-time requirements

> **Can you afford to lose data?**
 * How stateful is your application?
 * Are your instances unique?

> **How constrained are your edge nodes and infrastructure?**
 * There is little to no elasticity at the far edge

> **How far should the control plane be from the Edge?**
 * How autonomous are your edge devices and servers?
One Last Thing...

How is Stateful Kubernetes Going for You?
When Kubernetes Could Be a Bad Fit

1. Real-Time
2. Mission Critical
3. Constrained Devices
4. Heterogeneous Hardware
It Takes a Village to Build the Edge
Our Vision:

EdgeOps
Download the White Paper

https://hubs.la/H0L379c0
EdgeOps
Adapting DevOps for the Edge

Challenges
- Latency
- Bandwidth
- Resiliency
- Data sovereignty

Characteristics
- Long lifespan
- Heterogeneous
- Constraints
- Connectivity

Deployment
- Workloads
- Artifacts
- Strategies

DevOps Principles
Short Lifecycle, Collaboration, Continuous Integration and Delivery (CI/CD), Microservices, Infrastructure as Code
Delivering Open Source Edge Platforms. Now.

EdgeOps

Code first
Simplify and streamline production Edge deployments

COPYRIGHT (C) 2022, ECLIPSE FOUNDATION | THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE (CC BY 4.0)
Production quality code
Industry Leaders
Join Us!

Follow us!

Try ioFog, fog05 and zenoh

Join the Edge Native Working Group
Thank You

Frédéric Desbiens
@BlueberryCoder

@EdgeNativeWG
edgenative.eclipse.org