cloudera

Ask Bigger Questions

Introducing Apache HTrace
by Colin P. McCabe

4, ,"4-'«"'-1
A Al
A,




About Me

e | work on the Hadoop Distributed
Filesystem and related big data
technologies at Cloudera.

® Previously, | worked on the Ceph
distributed filesystem

cloudera



Overview

Motivations for HTrace
HTrace Architecture overview
Using HTrace

The HTrace community

Demo

Q&A

cloudera



Big Data in 2016

e Volume of data
continues to grow:
petabytes to exabytes

® New open source
projects
o Apache Spark
o RecordService
o Kudu

cloudera




Big Data Challenges

® Larger clusters
(thousands of nodes)
More disks (density)
Lower latency targets
Manageability
Monitoring
Heterogeneous clusters
Complex stacks

cloudera




Example Big Data Stacks

Hive
Impala Spark
HBase RecordService
HDFS HDFS
Linux Linux




Diagnosing Distributed Systems is Hard

e Many timeouts and fallbacks

e Performance problems often not repeatable

e Difficult to follow requests across project boundaries
and network boundaries

cloudera



Diagnosing Distributed Systems is Hard

HBase client DFSClient DataNode

:

DataNode

NameNode l
DataNode

cloudera



Diagnosing Distributed Systems is Hard

HBase client DFSClient DataNode

:

DataNode

NameNode l
SLOW DataNode

cloudera



Metrics

® Many different metrics .. cpuusage

available
o JMX

o top ) 4

O vmstat & qﬁ
O iostat ,. o

e Aggregated
e Downsampled over time

cloudera



Metrics

e Good for getting an overall view of throughput
e Bad for identifying latency problem:s.
o Average bandwidth, CPU, disk I/O, etc. numbers
often hide significant outliers
e Hard to figure out why
o Disk I/O stats are low... because of I/O errors?
Bottlenecks elsewhere? Low load?

cloudera



Log Files

e Daemons all generate log files

o HDFS audit log

o log4j files

o Client log files
e Usually stored on the nodes that generated them
e Kept for some length of time, then deleted

cloudera



Log Files

e Good for getting detailed information about a
particular operation or point in time

e Bad for getting a holistic view of a single request.
Difficult to correlate what is going on on different
systems via logs

e Tradeoff between performance and logging

e Split into many different files
o Per-host, per-project, per-faculty

cloudera



HTrace’s Approach

e Distributed Tracing
o Follow specific requests across
the entire cluster
o Follow requests across network
and project boundaries
o End-to-end tracing on a
sampled subset of requests

cloudera



End-to-End Tracing

e Multiple cluster nodes
e Multiple projects
o Follow a request from HBase to
HDFS
e Multiple languages (app vs. lib)
o Java, C, C++ language bindings
e Use available storage and compute
stack

cloudera




HTrace Goals

e Support multiple storage and compute backends
o Not tied to any one RPC, language, framework
Stable, well-supported client API

Approximately zero impact when not in use

Can be used on production clusters

Integration with upstream big data and Hadoop
projects, to allow end-users to enable tracing
without writing code.

cloudera



Trace Spans

e Annotations decompose requests into trace spans

e Trace spans can be nested (parent/child
relationship)

1 leCC a2 1
® Parent tem
copyFromLocal
;i !
FileSystem#createFileSystem Globber#glob
A
getFilelnfo

cloudera



Trace Spans

Fsshell/10.20.212.10 Is

FSClient/10.20.212.10 FileSystem#createFileSystem

FSClient/10.20.212.10 Globber#glob

FSClient/10.20.212.10 getFilelnfo

FSClient/10.20.212.10 ClientNamenodeProtocolzgetFilelnfo L
NameNode/10.20.212.10 ClientProtocol#getFileinfo !
FSClient/10.20.212.10 listPaths

FSClient/10.20.212.10 ClientNamenodeProtocol#getListing

NameNode/10.20.212.10 ClientProtocol#getListing i

® A trace span represents a length of time
o Description o Unique Identifier
o Start time o Process ID and IP address
o End time o Time Annotations
o Parents o Key/Value Annotations

cloudera



Sampling

e Tracing all requests generates an enormous amount
of data

® |t’s usually more useful to do sampling-- to trace
only < 1% of requests
e Sampling rate and sampler is configurable

e Sampling is currently done at the level of the entire
request

cloudera



Pluggable Architecture

® htraced-core is the
library for creating
spans

® SpanReceivers
process spans
created by htrace4-
core

® htrace-web queries

Distributed System
(HDFS, HBase, etc.)

htrace4-core API

SpanReceiver

htrace-web

cloudera



LocalFileSpanReceiver

® Stores spans in files

on the local NameNode DataNode
filesystem _ _

i /local/file /local/file

e (Can post-process files
later with _ _
/local/file /local/file

MapReduce, Spark,
ete. DataNode DataNode

cloudera



Span JSON

{
"a":"f8e9e09c72e388f3fef51b32115bebas",

"b":1448220893721,

"e":1448220893788,
"d":"ClientNamenodeProtocol#create",
"p":["f8e9e09c72e388f3dc6778916¢cf3a5ac"],
"r'":"FSClient/10.20.190.31"

cloudera



HTracedSpanReceiver

® Easy-to-use
SpanReceiver that NameNode DataNode

stores spans in a \ /

central daemon
_ , htraced
® Indexing, web ui,

aggregation in one / \

place DataNode DataNode

cloudera




htraced

e \Writtenin Go
® rpc
o Serializes spans via msgpack
o Exposes REST + JSON API for webapp and
command-line tools
o Java and Cclients
o Handles overload gracefully

cloudera



htraced

e storage
o Optimized for high write throughput
o Uses multiple leveldb instances to store span
data
o begin time, end time, duration, and span ID are
indexed so that range queries are fast
o leveldb persists data to disk

cloudera



HTrace Graphical Interface

Timeline FsShell/10.20.212.10 Is
FsShell/10.20.212.10 FileSystem#createFileSystem
Begin 2015-07-10T03:31:53,330 FsShell/10.20.212.10 Globber#glob
FsShell/10.20.212.10 getFileinfo
End | 2015-07-10T03:31:54,833 FsShell/10.20.212.10 ClientNamenodeProtocoltgetFilelnfo i
NameNode/10.20.212.10 ClientProtocol#getFilelnfo !
Cur 2015-07-10T03:31:53,760 FsShell/10.20.212.10 listPaths
FsShell/10.20.212.10 ClientNamenodeProtacoltgetListing
NameNode/10.20.212.10 ClientProtocol#getlListing
Search
Began after X
0
Add Predicate~

cloudera



Using HTrace

e Adding HTrace support to applications
e Configuring HTrace
e Using the HTrace web interface

cloudera



Adding HTrace Support to Code

® Link against htrace4-core (java) or libhtrace.so
(C/C++)
e Allow HTrace to access the application or library

configuration
e Add trace spans to measure important events

e Add annotations to trace spans

cloudera



Adding HTrace Support to Code

e Some applications and libraries will need to pass
parent trace IDs over the network

parent trace 1D

FSClient DataNode

cloudera



htrace-core API

® Tracer
o Creates trace scopes
o Each tracer has its own sampling configuration
o Use is thread-safe

Tracer tracer = new Tracer.Builder("FsShell").
conf(TraceUtils.wrapHadoopCon+(
SHELL_HTRACE_PREFIX, getConf())).build();

cloudera



htrace-core API

® TraceScope
o Manages the trace span for this thread (nests)

TraceScope piScope =
tracer.newScope("calculatePi");
try {
calculatePi();
} finally {
piScope.close();

¥

cloudera



htrace-core API

® Span
o The Trace span itself
Span piSpan = piScope.getSpan();
if (piSpan != null) {

piSpan.addKVAnnotation(“piDigits?”,
Integer.toString(numPiDigits));

cloudera



htrace-core APl Wrapper Classes

e Wrappers automatically create spans for work items
o TraceRunnable
o TracerCallable
O TraceExecutorService

Runnable myRunnable =
tracer.wrap(myPiRunnable, “calculatePi”);

cloudera



htrace-core API Internal Classes

e Sampler

o Determines which requests to trace
® TracerlD

o Represents the span ID of a trace
e TracerPool

o Used to manage a group of Tracers
o Usually the default TracerPool is fine

cloudera



htrace-core API Internal Classes

TracerPool

owns

Tracer

creates

creates

TraceRunnable

creates

owns
A4

Sampler

TraceScope

owns

Span

owns

SpanlD

cloudera




Configuring HTrace

e Determine which SpanReceiver to use
e Set up configuration

® Run htraced or other daemons if needed

cloudera



Configuring HTrace in Hadoop

e Add htrace-htraced.jar to CLASSPATH (or whichever
SpanReceiver is being used)

e Set up hadoop.htrace.span.receiver.classes and
other HTrace configuration keys

e Set up htraced

® More instructions at

cloudera



HTrace Community

e Vibrant upstream community
o HTrace is an Apache open source Project
O Contributors from NTT Data, Cloudera,
Hortonworks, Facebook, and others
o Two releases in the last few months-- 4.0 and

4.0.1

cloudera



HTrace Community

e Sharing ideas with other big data projects
o Hadoop
0 HBase
0 OpenTracing
o XTrace
o Twitter Zipkin

cloudera



Recent Work in HTrace

More effective error checking in the htrace client
Optimized RPC format for sending spans to htraced
Better integration with HDFS

New web GUI for visualizing spans

Trace spans are now tagged with IP address or
hostname

® Span IDs extended to 128 bits to avoid collisions

cloudera



HTrace in Cloudera’s Distribution of Hadoop

® Available as a Cloudera Labs “beta” for CDH5.5 and
later

e HDFS tracing is supported

e RPMs and debs are available for htraced

e See http://blog.cloudera.com/blog/2015/12/new-
in-cloudera-labs-apache-htrace-incubating/

cloudera


http://blog.cloudera.com/blog/2015/12/new-in-cloudera-labs-apache-htrace-incubating/
http://blog.cloudera.com/blog/2015/12/new-in-cloudera-labs-apache-htrace-incubating/
http://blog.cloudera.com/blog/2015/12/new-in-cloudera-labs-apache-htrace-incubating/

Planned

Improve the HTrace integration in HBase

Add more annotations to Hadoop span data to get
more insight

Support more SpanReceivers

Better integration with cluster management systems
Improve and test C and C++ support

Create an aggregate view for spans

cloudera



HTrace Demo

cloudera



HTrace Q & A

cloudera



