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Ask Bigger Questions

Introducing Apache HTrace
by Colin P. McCabe
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About Me

e | work on the Hadoop Distributed
Filesystem and related big data
technologies at Cloudera.

® Previously, | worked on the Ceph
distributed filesystem
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Overview

Motivations for HTrace
HTrace Architecture overview
Using HTrace

The HTrace community

Demo

Q&A
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Big Data in 2016

e Volume of data
continues to grow:
petabytes to exabytes

® New open source
projects
o Apache Spark
o RecordService
o Kudu
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Big Data Challenges

® Larger clusters
(thousands of nodes)
More disks (density)
Lower latency targets
Manageability
Monitoring
Heterogeneous clusters
Complex stacks
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Example Big Data Stacks

Hive
Impala Spark
HBase RecordService
HDFS HDFS
Linux Linux




Diagnosing Distributed Systems is Hard

e Many timeouts and fallbacks

e Performance problems often not repeatable

e Difficult to follow requests across project boundaries
and network boundaries
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Diagnosing Distributed Systems is Hard

HBase client DFSClient DataNode
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Diagnosing Distributed Systems is Hard

HBase client DFSClient DataNode

:

DataNode

NameNode l
SLOW DataNode
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Metrics

® Many different metrics .. cpuusage

available
o JMX

o top ) 4

O vmstat & qﬁ
O iostat ,. o

e Aggregated
e Downsampled over time
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Metrics

e Good for getting an overall view of throughput
e Bad for identifying latency problem:s.
o Average bandwidth, CPU, disk I/O, etc. numbers
often hide significant outliers
e Hard to figure out why
o Disk I/O stats are low... because of I/O errors?
Bottlenecks elsewhere? Low load?
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Log Files

e Daemons all generate log files

o HDFS audit log

o log4j files

o Client log files
e Usually stored on the nodes that generated them
e Kept for some length of time, then deleted
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Log Files

e Good for getting detailed information about a
particular operation or point in time

e Bad for getting a holistic view of a single request.
Difficult to correlate what is going on on different
systems via logs

e Tradeoff between performance and logging

e Split into many different files
o Per-host, per-project, per-faculty
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HTrace’s Approach

e Distributed Tracing
o Follow specific requests across
the entire cluster
o Follow requests across network
and project boundaries
o End-to-end tracing on a
sampled subset of requests
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End-to-End Tracing

e Multiple cluster nodes
e Multiple projects
o Follow a request from HBase to
HDFS
e Multiple languages (app vs. lib)
o Java, C, C++ language bindings
e Use available storage and compute
stack
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HTrace Goals

e Support multiple storage and compute backends
o Not tied to any one RPC, language, framework
Stable, well-supported client API

Approximately zero impact when not in use

Can be used on production clusters

Integration with upstream big data and Hadoop
projects, to allow end-users to enable tracing
without writing code.
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Trace Spans

e Annotations decompose requests into trace spans

e Trace spans can be nested (parent/child
relationship)

1 leCC a2 1
® Parent tem
copyFromLocal
;i !
FileSystem#createFileSystem Globber#glob
A
getFilelnfo
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Trace Spans

Fsshell/10.20.212.10 Is

FSClient/10.20.212.10 FileSystem#createFileSystem

FSClient/10.20.212.10 Globber#glob

FSClient/10.20.212.10 getFilelnfo

FSClient/10.20.212.10 ClientNamenodeProtocolzgetFilelnfo L
NameNode/10.20.212.10 ClientProtocol#getFileinfo !
FSClient/10.20.212.10 listPaths

FSClient/10.20.212.10 ClientNamenodeProtocol#getListing

NameNode/10.20.212.10 ClientProtocol#getListing i

® A trace span represents a length of time
o Description o Unique Identifier
o Start time o Process ID and IP address
o End time o Time Annotations
o Parents o Key/Value Annotations
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Sampling

e Tracing all requests generates an enormous amount
of data

® |t’s usually more useful to do sampling-- to trace
only < 1% of requests
e Sampling rate and sampler is configurable

e Sampling is currently done at the level of the entire
request

cloudera



Pluggable Architecture

® htraced-core is the
library for creating
spans

® SpanReceivers
process spans
created by htrace4-
core

® htrace-web queries

Distributed System
(HDFS, HBase, etc.)

htrace4-core API

SpanReceiver

htrace-web
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LocalFileSpanReceiver

® Stores spans in files

on the local NameNode DataNode
filesystem _ _

i /local/file /local/file

e (Can post-process files
later with _ _
/local/file /local/file

MapReduce, Spark,
ete. DataNode DataNode
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Span JSON

{
"a":"f8e9e09c72e388f3fef51b32115bebas",

"b":1448220893721,

"e":1448220893788,
"d":"ClientNamenodeProtocol#create",
"p":["f8e9e09c72e388f3dc6778916¢cf3a5ac"],
"r'":"FSClient/10.20.190.31"
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HTracedSpanReceiver

® Easy-to-use
SpanReceiver that NameNode DataNode

stores spans in a \ /

central daemon
_ , htraced
® Indexing, web ui,

aggregation in one / \

place DataNode DataNode
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htraced

e \Writtenin Go
® rpc
o Serializes spans via msgpack
o Exposes REST + JSON API for webapp and
command-line tools
o Java and Cclients
o Handles overload gracefully
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htraced

e storage
o Optimized for high write throughput
o Uses multiple leveldb instances to store span
data
o begin time, end time, duration, and span ID are
indexed so that range queries are fast
o leveldb persists data to disk
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HTrace Graphical Interface

Timeline FsShell/10.20.212.10 Is
FsShell/10.20.212.10 FileSystem#createFileSystem
Begin 2015-07-10T03:31:53,330 FsShell/10.20.212.10 Globber#glob
FsShell/10.20.212.10 getFileinfo
End | 2015-07-10T03:31:54,833 FsShell/10.20.212.10 ClientNamenodeProtocoltgetFilelnfo i
NameNode/10.20.212.10 ClientProtocol#getFilelnfo !
Cur 2015-07-10T03:31:53,760 FsShell/10.20.212.10 listPaths
FsShell/10.20.212.10 ClientNamenodeProtacoltgetListing
NameNode/10.20.212.10 ClientProtocol#getlListing
Search
Began after X
0
Add Predicate~
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Using HTrace

e Adding HTrace support to applications
e Configuring HTrace
e Using the HTrace web interface
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Adding HTrace Support to Code

® Link against htrace4-core (java) or libhtrace.so
(C/C++)
e Allow HTrace to access the application or library

configuration
e Add trace spans to measure important events

e Add annotations to trace spans
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Adding HTrace Support to Code

e Some applications and libraries will need to pass
parent trace IDs over the network

parent trace 1D

FSClient DataNode
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htrace-core API

® Tracer
o Creates trace scopes
o Each tracer has its own sampling configuration
o Use is thread-safe

Tracer tracer = new Tracer.Builder("FsShell").
conf(TraceUtils.wrapHadoopCon+(
SHELL_HTRACE_PREFIX, getConf())).build();
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htrace-core API

® TraceScope
o Manages the trace span for this thread (nests)

TraceScope piScope =
tracer.newScope("calculatePi");
try {
calculatePi();
} finally {
piScope.close();

¥
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htrace-core API

® Span
o The Trace span itself
Span piSpan = piScope.getSpan();
if (piSpan != null) {

piSpan.addKVAnnotation(“piDigits?”,
Integer.toString(numPiDigits));
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htrace-core APl Wrapper Classes

e Wrappers automatically create spans for work items
o TraceRunnable
o TracerCallable
O TraceExecutorService

Runnable myRunnable =
tracer.wrap(myPiRunnable, “calculatePi”);
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htrace-core API Internal Classes

e Sampler

o Determines which requests to trace
® TracerlD

o Represents the span ID of a trace
e TracerPool

o Used to manage a group of Tracers
o Usually the default TracerPool is fine
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htrace-core API Internal Classes

TracerPool

owns

Tracer

creates

creates

TraceRunnable

creates

owns
A4

Sampler

TraceScope

owns

Span

owns

SpanlD
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Configuring HTrace

e Determine which SpanReceiver to use
e Set up configuration

® Run htraced or other daemons if needed
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Configuring HTrace in Hadoop

e Add htrace-htraced.jar to CLASSPATH (or whichever
SpanReceiver is being used)

e Set up hadoop.htrace.span.receiver.classes and
other HTrace configuration keys

e Set up htraced

® More instructions at
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HTrace Community

e Vibrant upstream community
o HTrace is an Apache open source Project
O Contributors from NTT Data, Cloudera,
Hortonworks, Facebook, and others
o Two releases in the last few months-- 4.0 and

4.0.1
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HTrace Community

e Sharing ideas with other big data projects
o Hadoop
0 HBase
0 OpenTracing
o XTrace
o Twitter Zipkin
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Recent Work in HTrace

More effective error checking in the htrace client
Optimized RPC format for sending spans to htraced
Better integration with HDFS

New web GUI for visualizing spans

Trace spans are now tagged with IP address or
hostname

® Span IDs extended to 128 bits to avoid collisions
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HTrace in Cloudera’s Distribution of Hadoop

® Available as a Cloudera Labs “beta” for CDH5.5 and
later

e HDFS tracing is supported

e RPMs and debs are available for htraced

e See http://blog.cloudera.com/blog/2015/12/new-
in-cloudera-labs-apache-htrace-incubating/

cloudera


http://blog.cloudera.com/blog/2015/12/new-in-cloudera-labs-apache-htrace-incubating/
http://blog.cloudera.com/blog/2015/12/new-in-cloudera-labs-apache-htrace-incubating/
http://blog.cloudera.com/blog/2015/12/new-in-cloudera-labs-apache-htrace-incubating/

Planned

Improve the HTrace integration in HBase

Add more annotations to Hadoop span data to get
more insight

Support more SpanReceivers

Better integration with cluster management systems
Improve and test C and C++ support

Create an aggregate view for spans
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HTrace Demo
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HTrace Q & A
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