
Actors: not just for 
movies anymore

Coupling your architecture to physics not fiction




@boulderdanh



@Mtn. 
basecamp

Big rewrite of a 
database contended 
pipeline to an event-
sourced system



"Scaling up" is not a sustainable practice



Scaling to lots of processes is difficult



Languages and frameworks favor running on a 
single machine



Designing and tooling for 
concurrency can be the answer



Concurrent vs. Parallel
• Simultaneous


• Implementation

• Independent


• Design


• Asynchronous



@ Transmogrify Inc.



Concurrency is planning

The Golder

The Shaper



Construct pipelines



Construct pipelines



Isn't this more work?

VS.



Isn't this slower?

VS.



Scalable



Concurrency   Parallelism



Parallelism scales

"The parallelism in today’s machines is limited by the data 
dependencies in the program and by memory delays and 

resource contention stalls "



A resource

computation 1 computation 2 computation 3 computation 4 computation 5



Concurrency in frameworks
Monolithic 

Rails


LAMP

Distributed 

Finagle


Erlang / OTP



DB

Web Process

Web Process

Web Process

Web Process



Latent Concurrency



Latent Concurrency

• Concurrency is unplanned


• Rely's on a subset of the system



Web Process

Web Process

Web Process

Web Process

Service A

Service B

Service C

Service D

Service E

Worker

Worker

Worker

Worker



Holistic Concurrency

• Concurrency is planned and constructed 

• Concurrency is a property of the system


• Reduction in contention / sharing



Holistic Concurrency

• Parallelizable / Scalable


• Resource density


• Fine grained scaling



Plan for concurrent 
systems



The fundamental choice

Shared data 

or


Message passing



Concurrency in frameworks

Shared data Message passing



Shared data concurrency

Locks

Semaphores

https://stackoverflow.com/questions/tagged/thread-safety

Synchronization

CAS

Atomic

Memory barriers

STM
JSR-133

Happens before

a tag cloud of pain, in comic sans

Thread safety



Shared data

lots of primitives

Locks

Semaphores

Atomic

Memory barriers

STM

Volatile



Shared data
correctness is elusive



Shared data

"The first huge barrier to bringing clockless 
chips to market is the lack of automated 

tools to accelerate their design"





Actors, abstractly

• create actors


• send messages


• store information for the next message



Implementation

• mailbox


• similar to an object


• concurrency and distribution



Coupled with physics

• Actor sends


• Stop


• +1


• +1


• +1


• What state does it end up in?

Actor

Stop

+1

+1

+1



Actor definition
class Counter extends Actor {  
  var count = 0  
 
  def receive: Receive = { 
    case Increment(by) => count += by 
    case Get           => sender ! count 
  }  
} 



Actor definition
class Counter extends Actor {  
  def receive = next(0) // initialize base state 
 
  def next(count: Int): Receive = { 
    case Increment(by) => become(next(count + by)) 
    case Get           => sender ! count 
  }  
} 

store information for the next message



Actors as bank accounts

class BankAccount(name: String) extends Actor {  
  var count = 0  
 
  def receive = { 
    case Credit(by)                    => count += by 
    case Balance                       => sender ! count 
    case Debit(by) if (count - by) < 0 => sender ! NSF 
    case Debit(by)                     => count -= by  
    case "whoru?"                      => sender ! name 
  }  
} 



Actors can create actors

class Bank(name: String, insured: Boolean) extends Actor {  
  def receive = { 
    case AddAccount(name) =>  
      context.actorOf(Props(new BankAccount(name))) 
  } 
} 



A program using actors

 override def main(arg: Array[String]) = { 
  val system            = ActorSystem() 
  val counter: ActorRef = system.actorOf(Props[Counter]) 
 
  counter ! Increment(10) 
 
  val result = counter ? Get 
  result.onSuccess { case t => println(t) }  
} 



A key abstraction
val counter: ActorRef = system.actorOf(Props[Counter])

• The address for an actor


• Tells you nothing about where the actor is


• Deployment is a runtime/config decision



Sending messages

• Asynchronous


• Response is optional

acct ! Increment(10) 
acct.tell(Increment(10)) 

def !(message: Any): Unit



• Still Asynchronous


• Implemented with Actors

Asking for information
(counter ? Get).onSuccess { case t => println(t) }



Actors are great at concurrency

• No synchronization


• Communication is asynchronous


• Late binding deployment decisions



Actors are great at concurrency

• Light weight 


• Actors are micro-services



Surely there are other 
ways



Communicating Sequential Processes



Key distinctions

• The channel is fundamental


• Communication is synchronous


• Channels are anonymous vs. named actors



Message passing frameworks

• Streams (Reactive Java)


• DataFlow


• CPS (not to be confused with CSP)



Wrapping up

• Concurrency is inevitable 

• Use tools that help you write software to plan for it


• Choose tools that promote message passing


• Scale your systems



Any Questions?

@boulderdanh



References

• Everything you wanted to know about the actor model - http://bit.ly/16O4qSP


• A Universal Modular ACTOR Formalism for Artificial Intelligence - Carl Hewitt 


• Communicating Sequential Processes - C.A.R. Hoare


• Coming Challenges in Microarchitecture and Architecture - Ronny Ronen


• The Tail at Scale - Jeffrey Dean and Luiz André Barroso

http://bit.ly/16O4qSP

