
What is a Service Mesh?

Adrian Otto, Google Max Saltonstall, Google

Abstract

Adopting a microservices architecture to modernize your
applications has numerous benefits, but it also presents a
number of new challenges. Container orchestration engines
such as Kubernetes help to address many of these
concerns, but it’s not the tool to solve all concerns. For
example, how do you find out why your application is
suddenly running slow? How will one service find a
remote service in another cluster? How can I limit which
services should be allowed to communicate with each
other? How to efficiently distribute traffic throughout my
cluster as it grows and shrinks? How can I release a new
version of software to only a single geography? How can I
stop trusting my network completely? All of these
challenges can be addressed using a service mesh. This
paper explains what a service mesh is, how it’s different
from the tools you’ve already heard about, and how you
can solve each of these challenges using one. Istio, an open
source project complimentary to Kubernetes, allows you to
set up a service mesh of your own to start learning more
about how it works. We also explain how Google has used
these solutions to address challenges in our own systems
using a range of best practices for managing distributed
systems both for software developers, and system
operators.

1.1 Definition

A service mesh is a distributed system that controls the
configuration and behaviour of all your microservices.

This works by centralizing the control for data going in
and out of your services, and proxying all the traffic
between them. The service mesh brings benefits by acting
as a single source of data collection about inter-service
communication and traffic in and out of the microservices
ecosystem.

2.1 Benefits

2.2 Scale and Efficiency

Using a service mesh allows for increased scale for your
microservices, without adding extra burdens to the
development of the individual services themselves. To
adapt to large swings in demand or usage, your service
mesh can handle load balancing for your microservices,
distributing requests and avoiding overloaded processes.
Using traditional load balancing techniques that
concentrate traffic at physical or logical reverse proxies
limits overall system scalability at the points of your
network where traffic is concentrated. Imagine having a
system that offers the same capability, but accomplishes it
in a way that every server in the infrastructure can evenly
balance a portion of the traffic. This way your network
capacity can scale proportionally to the number of servers
you use without having to reason about how to elegantly
distribute that traffic.

2.3 Redundancy, Reliability, and Advanced
Deployment

A service mesh can also enforce redundancy standards on
the services it supports, to maintain reliable, accessible
services to the rest of the ecosystem, even while it’s being
updated. One of the benefits of microservices is the ability
to update your systems more frequently with less risk of
regression. This is because changes are made to smaller,
simpler units of code. Enjoying this benefit means that you
can update your systems with lots of changes much more
frequently than if you used a monolithic software design. If
your software is constantly being upgraded, you might
intentionally overprovision each of your microservices so
that there is enough redundancy to run the service even
when it’s conducting an upgrade to a new version. Imagine
using a service mesh to manage the allocation of resources
in accordance with your predefined target for available
capacity, and relying on your container management
platform, such as Kubernetes to maintain the right capacity
and redundancy level during those times that you are not
rolling out a software update.

Now let’s explore another deployment related concern.

https://kubernetes.io/
https://istio.io/

When you want to update your software, you might want
to test your new release using a canary process where the
new version is gradually introduced. This allows you to
gain confidence in a new version before deciding to release
it to your entire user base. Service mesh tools can manage
new release versions of a service by testing them out on a
small percentage of traffic first, gradually increasing the
exposure as the rollout goes smoothly. This creates a
smooth flow from one version to another, with automated
rollback if a new version creates new errors or issues. This
capability can also help you canary test with specific
targets, clients or regions.

Another problem introduced by microservices
architectures is that some services may be more sensitive
to connection concurrency constraints whereas others are
less sensitive. For example, you may have a web service
that gracefully handles thousands of concurrent HTTP
connections and a data persistence service that can only
gracefully handle dozens of concurrent connections. Your
service mesh can control this for you so only an optimal
number of concurrent connections are routed to your data
persistence service, while more are allowed to your web
application service. This is easier than configuring an
additional microservice of connection concentrators to
wire your services together. Your service discovery logic
can be simplified by eliminating the connection
concentrators.

2.4 Security: Authentication, Authorization, and
Encryption

Dividing a monolithic app into microservices creates a
whole new set of security concerns, and relies on each
service owner to manage authentication, authorization and
encryption. To simplify this, a service mesh can globally
apply policy that you define centrally. This concern is
beyond the scope of what systems like Kubernetes were
designed for, but it’s a perfect fit for a service mesh. Using
a service mesh to apply a security policy across your entire
network brings finer-grained control than perimeter
firewall-style security protection. In dynamic
environments, new instances of your microservices may be
created several times per minute. Configuring your
firewalls this rapidly may be impractical or impossible, if
they have a programmable control mechanism at all. This
challenge typically results in the use of perimeter only
policies to control access to microservices that are not

frequently updated. If all of your microservices are able to
freely communicate with all of your other microservices,
then if only one of them were compromised, it may lead to
a breach to your entire system. If you have a way to
dynamically control which services should be allowed to
communicate with which others on which ports, protocols,
and request types, and each microservice required valid
authorization, the attack surface of your system would be
dramatically reduced. This is another way to use a service
mesh.

2.5 Insight

Just about every single process program has some form of
runtime debugger tool, no matter what language it was
written in. If you start peeling off parts of your application
into microservices, and running a multi-process distributed
system connected by messaging, it becomes more
challenging to debug problems that involve multiple
services. Using a service mesh allows you to
systematically track and correlate communications
between your various services in a way that they can be
tracked and charted. Istio provides a built-in feature for
visualizing request flows so you can zero in on
performance bottlenecks, and quickly narrow down where
to look when something is not performing well. Here is an
example of the sort of visualization you get for free when
you use Istio as your service mesh.

3.1 Lessons learned

For many years, Google has employed distributed systems
designs in order to build solutions that work at very large
scale. Network functions such as load balancing are widely
distributed throughout our infrastructure so network flows
and computational processing of our network packets are
not concentrated in hotspots, but instead shared widely.
The systems that control this functionality are logically
centralized, but managed as a distributed system. For
example, configuration and policy can be managed
centrally, and globally enforced throughout the system
through a distributed control plane. This allows for low
latency handling of network connections throughout our
infrastructure. You can do this too. We have released Istio
as an open source software project, and engaged a growing
community of contributors to help address this openly so
that you can enjoy the same benefits that Google has
evolved through years of learning and refinement.

Istio is designed to work with a variety of system types,
including both virtualization environments, and container
environments. Early versions of Istio demonstrate
integration with Kubernetes using a sidecar pattern. Your
traffic is directed to a lightweight transparent reverse proxy
that runs in each of your pods, and applies your desired
policies and features. An API service allows you to
configure the proxies centrally.

You might have an initial reluctance to introducing a
transparent proxy in front of your services. Proxying your
traffic in all your pods may come at a small performance
cost, but it’s totally worth it, because it enables a much
more powerful management paradigm for your systems.
Your gain in overall system efficiency and the
simplification of your security configuration will probably
offset the proxying overhead.

3.2 Next steps

Ready to begin?

Find one of your applications using Kubernetes, or one that
you can containerize without too much trouble, get your
developers to go through the Istio codelab, and then start
modifying your pods to add service mesh capabilities. You
can download the open source code freely (and even
contribute if you have suggestions or ideas).

https://codelabs.developers.google.com/codelabs/cloud-hello-istio/index.html?index=..%2F..%2Findex#0
https://github.com/istio/istio

