
1

The Curious Case of Memory Growth
A Debugging Story

Anita Zhang
engineerd managerd (Software Engineering Manager)

2

Agenda 01 Setting the Stage

02 Searching for Answers

03 Root Cause Explained

04 Hindsight

3

Setting the Stage
4

Specification

5

• CentOS Stream 8

﹘ Could also reproduce on Fedora 34

• Upgrading from systemd 247 to systemd 248 (latest is 251)

﹘ Built from the specfile in the Hyperscale SIG

﹘ Based on the Fedora rawhide specfile for systemd 248.2

• Kernel 5.6+

Setting the Stage

https://git.centos.org/rpms/systemd/c/c3e52805e349d65f0b39534688e2f489bfc2bcdc?branch=c8s-sig-hyperscale

Setting the Stage

6

What We Saw
• Average memory for

systemd-journald grew from ~17
MB to ~50 MB

• Issue reported as the systemd
248 update was ongoing

﹘ Memory growth did not directly
correlate with systemd roll out

Memory (MB) Average per Day

Probing a Host

Setting the Stage

7

pmap -x 800
800: /usr/lib/systemd/systemd-journald
Address Kbytes RSS Dirty Mode Mapping
000055908738e000 160 152 0 r-x-- systemd-journald (deleted)
00005590875b5000 8 8 8 r---- systemd-journald (deleted)
00005590875b7000 4 4 4 rw--- systemd-journald (deleted)
00005590875b8000 378952 378796 378796 rw--- [anon]
...some lines omitted for brevity...

Setting the Stage

8

Was it the roll out?
• Normally systemd daemons restart into

the new binary during updates.

• Noticed that systemd-journald did not!

﹘ This is fixed in systemd 249+

• Correctly monitoring systemd-journald
247 vs 248 confirmed the regression
was due to the roll out.

Anonymous Memory per 5s

Searching for
Answers

9

Suspicious Commits?

Searching for Answers

10

$ git log v247..v248 --oneline --no-merges src/libsystemd/sd-journal/ src/journal

...some lines omitted for brevity...
0eaee8281d journald: when we fail to add a new entry to a journal, return the seqno
258190a0d5 mmap-cache: drop ret_size from mmap_cache_get()
104fc4be11 mmap-cache: bind prot(ection) to MMapFileDescriptor
073f50a099 mmap-cache: separate context and window list cache hit accounting
3a595c597a mmap-cache: replace stats accessors with log func

Memory Leak?

Searching for Answers

11

valgrind --leak-check=full --show-leak-kinds=all /usr/lib/systemd/systemd-journald

...some lines omitted for brevity...
==1042650== LEAK SUMMARY:
==1042650== definitely lost: 0 bytes in 0 blocks
==1042650== indirectly lost: 0 bytes in 0 blocks
==1042650== possibly lost: 0 bytes in 0 blocks
==1042650== still reachable: 8,192 bytes in 2 blocks
==1042650== suppressed: 0 bytes in 0 blocks

Searching for Answers

12

Bisect
• Started bisecting starting with the

“suspicious” commits.

• Put each commits’ build of
systemd-journald on separate hosts.

﹘ Increased logging on those hosts.

• Needed 1-2 days of data to see the
regression in our charts.

hostB

hostC

systemd_104fc4be11

systemd_073f50a099

systemd_3a595c597a

hostA

Searching for Answers

13

Trying Things

https://brendangregg.com/FlameGraphs/
memoryflamegraphs.html

• strace not the best tool for this job.

• Use eBPF!

﹘ Great for tracing and observability.

﹘ Meta is a founding member of the
eBPF Foundation!

• Found Brendan Gregg’s page for looking
at memory leaks and growth (right).

﹘ Started experimenting with BCC.

https://brendangregg.com/FlameGraphs/memoryflamegraphs.html
https://brendangregg.com/FlameGraphs/memoryflamegraphs.html

Searching for Answers

14

Count Calls to
malloc()
• BCC’s stackcount.py

﹘ Used to count events and their stack
traces.

• Stacks/allocations were similar between
systemd-journald 247 and 248.

/usr/share/bcc/tools/stackcount -U c:malloc -p 800

...cut for brevity...

b'read_one_line_file'

 b'get_process_comm'

 b'client_context_read_basic'

 b'client_context_really_refresh'

 b'client_context_maybe_refresh'

 b'stdout_stream_log'

 b'stdout_stream_line'

 b'stdout_stream_found'

 b'stdout_stream_scan'

 b'stdout_stream_process'

 b'source_dispatch'

 b'sd_event_dispatch'

 b'sd_event_run'

 b'main'

 b'__libc_start_main'

 b'[unknown]'

 1508

https://github.com/iovisor/bcc/blob/master/tools/stackcount.py

Searching for Answers

15

Memory Leak?
• BCC’s memleak.py

﹘ Used to trace outstanding
allocations.

• Stacks/allocations were similar between
systemd-journald 247 and 248.

• All allocations were eventually
deallocated; no leak.

$ memleak.py -o 600000 -p 800

...cut for brevity...

[01:38:50] Top 10 stacks with outstanding allocations:

 69 bytes in 2 allocations from stack

 __strdup+0x1e [libc-2.28.so]

 [unknown]

 85 bytes in 3 allocations from stack

 str_realloc+0x44 [libsystemd-shared-247.so]

 get_process_cmdline+0x58d [libsystemd-shared-247.so]

 client_context_read_basic+0x127 [systemd-journald]

 client_context_really_refresh+0xf9 [systemd-journald]

 client_context_maybe_refresh+0x1c9 [systemd-journald]

 client_context_get_internal+0x1d4 [systemd-journald]

 client_context_get+0x49 [systemd-journald]

 server_process_native_message+0x104 [systemd-journald]

 server_process_datagram+0x942 [systemd-journald]

 source_dispatch+0x247 [libsystemd-shared-247.so]

 sd_event_dispatch+0x234 [libsystemd-shared-247.so]

 sd_event_run+0x30a [libsystemd-shared-247.so]

 main+0x4c9 [systemd-journald]

 __libc_start_main+0xf3 [libc-2.28.so]

 [unknown]

 110 bytes in 2 allocations from stack

 __strdup+0x1e [libc-2.28.so]

 [unknown]

https://github.com/iovisor/bcc/blob/master/tools/memleak.py

What We Know So Far

16

• No leak!

﹘ Confirmed by 3 tools.

• Initial bisect did not find the blame commit.

• Allocations were similar between systemd-journald 247 and 248.

﹘ No extra calls to malloc() and related functions.

• Allocations tend to start from client_context_read_basic().

﹘ But systemd’s core functions do the allocations (e.g. read_full_virtual_file()).

• Used this information to change bisect strategy.

Searching for Answers

Another Set of Suspicious Commits

Searching for Answers

17

$ git log v247..v248 --oneline --no-merges src/basic/fileio*

...many lines omitted for brevity...
2ac67221bb basic/fileio: fix reading of not-too-small virtual files
f1a8a66c35 basic/fileio: use malloc_usable_size() to use all allocated memory
a9899ff358 basic/fileio: optimize buffer sizes in read_full_virtual_file()
ca79564309 basic/fileio: simplify calculation of buffer size in...
c5384931b7 fileio: add missing overflow checks to read_full_virtual_file()
b235b03138 fileio: don't use realloc() in read_full_virtual_file()

Searching for Answers

18

Bisect (Again)
• Another 1-2 days of data to see the

regression in our charts.

hostB

hostC

systemd_2ac67221bb

systemd_a9899ff358

systemd_b235b03138

hostA

Searching for Answers

19

Bisect Prevails

https://github.com/systemd/systemd/commit
/2ac67221bb6270f0fbe7cbd0076653832cd4
9de2

• Summary of the commit

﹘ Instead of allocating 4K and using
realloc() to expand the buffer, we
start with 4MB and realloc() to
decrease the buffer.

﹘ Everything is freed properly and
memory is returned to libc; so what’s
the problem?

https://github.com/systemd/systemd/commit/2ac67221bb6270f0fbe7cbd0076653832cd49de2
https://github.com/systemd/systemd/commit/2ac67221bb6270f0fbe7cbd0076653832cd49de2
https://github.com/systemd/systemd/commit/2ac67221bb6270f0fbe7cbd0076653832cd49de2

Root Cause
Explained

20

21

Root Cause Explained

Allocations in systemd-journald 247

Illustration of the Heap

22

Root Cause Explained

Allocations in systemd-journald 247

malloc(4096) malloc(4096)malloc(4096) malloc(4096)

Illustration of the Heap

23

Root Cause Explained

Allocations in systemd-journald 247

realloc(ptr, 8192)

Illustration of the Heap

24

Root Cause Explained

Allocations in systemd-journald 247

realloc(ptr, 8192)

Illustration of the Heap

25

Root Cause Explained

Allocations in systemd-journald 247

realloc(ptr, 16384)

Illustration of the Heap

26

Root Cause Explained

Allocations in systemd-journald 247

realloc(ptr, 16384)

Illustration of the Heap

27

Root Cause Explained

Allocations in systemd-journald 247

realloc(ptr, 32768)

Illustration of the Heap

28

Root Cause Explained

Allocations in systemd-journald 247

realloc(ptr, 32768)

Illustration of the Heap

29

Root Cause Explained

Allocations in systemd-journald 248

malloc(4194304)

Illustration of the Heap

30

Root Cause Explained

Allocations in systemd-journald 248

realloc(ptr, 4096)

Illustration of the Heap

31

Root Cause Explained

Allocations in systemd-journald 248

realloc(ptr, 4096)

Illustration of the Heap

32

Root Cause Explained

Allocations in systemd-journald 248

Illustration of the Heap

malloc(4194304)

33

Root Cause Explained

Allocations in systemd-journald 248

Illustration of the Heap

malloc(4194304)

34

Root Cause Explained

Allocations in systemd-journald 248

Illustration of the Heap

realloc(ptr, 4096)

35

Root Cause Explained

Allocations in systemd-journald 248

Illustration of the Heap

realloc(ptr, 4096)

36

Root Cause Explained

Allocations in systemd-journald 248

Illustration of the Heap

malloc(4194304)

37

Root Cause Explained

Allocations in systemd-journald 248

Illustration of the Heap

realloc(ptr, 4096)

38

Root Cause Explained

Allocations in systemd-journald 248

Illustration of the Heap

realloc(ptr, 4096)

39

Root Cause Explained

Allocations in systemd-journald 248

Illustration of the Heap

free(ptr)

Root Cause Explained

40

Fix Merged

https://github.com/systemd/systemd/commit
/5aaa55d841249f057fd69e50cf12a52e9781a
6ce

• Summary of the fix:

﹘ Partially revert back to previous
behavior.

﹘ Allocate 4K and use realloc() to
expand the buffer as needed.

• Meta was the first to notice and fix it!

https://github.com/systemd/systemd/commit/5aaa55d841249f057fd69e50cf12a52e9781a6ce
https://github.com/systemd/systemd/commit/5aaa55d841249f057fd69e50cf12a52e9781a6ce
https://github.com/systemd/systemd/commit/5aaa55d841249f057fd69e50cf12a52e9781a6ce

Hindsight
41

Hindsight

42

Rate of Change of Anonymous Memory
systemd 247 systemd 248

mtrace()

43

• Part of glibc.

• Function call:

﹘ Insert at the beginning of the program to record memory allocation and
deallocations.

﹘ Records the data to a text file.

• Command line tool:

﹘ Uses the text file and binary to tell you about unfreed memory.

Hindsight

Hindsight

44

systemd-journald 247 systemd-journald 248

Massif: a heap profiler
timeout 20m /usr/local/bin/valgrind --tool=massif --time-unit=B /usr/lib/systemd/systemd-journald

Hindsight

45

Another Way?
• Instead of realloc(), do
malloc() and memcpy().

• The reallocation would be copied
to create less fragmentation.

• More malloc() calls, more copies.

Memory Usage (MB) Over 24 Hours

systemd-journald
248

systemd-journald
248 w/ fix

systemd-journald 248 w/ alternative
fix (memcpy())

Takeaways

46

• Invest in monitoring, logging, and visualizations!

• Usable stack traces are a blessing.

﹘ Needs frame pointers.

• Always be willing to learn and pick up new tools!

﹘ eBPF is amazing: BCC, bpftrace, etc.

﹘ Valgrind is more than memcheck: massif, callgrind, helgrind, etc.

Hindsight

Questions?
THANK YOU FOR YOUR TIME

47

Anita Zhang
github.com/anitazha
twitter.com/the_anitazha

Extra Slides
48

Specification

Setting the Stage

49

$ cat /etc/systemd/journald.conf

[Journal]
ForwardToSyslog = true
RuntimeMaxUse = 10M
Storage = volatile

