() coverity

Static Analysis Use Case

Samba and Coverity

David Maxwell for
Scale 9x

Coverity Scan

 Launched, March 2006

 DHS sponsored “Open Source Hardening Project”
— 2006-2009

« Using Coverity’s commercial static analysis product to
identify bugs at the source code level

« 35 open source projects on day one
« Since grown to 300+ projects

« QOver 15,000 bugs fixed

Evaluating Effectiveness (‘ coverity

There Is no single measure of the
effectiveness of a tool on the software
development process.

Evaluating Effectiveness (‘ coverity

Since we can never run the same
development effort twice, with identical
teams, portions of this evaluation are highly
subjective.

Evaluating Effectiveness

* Objective measures
— Static Analysis produced defect counts
— Numbers of Bug Reports
— Defects confirmed as ‘real’ by the developers

* Subjective measures
— Anecdotal comments by developers
— Community feedback
— ‘Support Load’ reduction

Objective measures

« Static Analysis produced defect counts

— Good objective measure
* Reproducible
« Consistent
 Low effort to collect
« Automatable

« “Static Analysis Tools as Early Indicators of Pre-
Release Defect Density” - Microsoft Research
Paper

Objective measures

 Numbers of Bug Reports

— Potentially useful if all other factors are
controlled

— Not the case in our example

Multiple development branches

Concurrent new development during defect
resolution

Userbase changes over time
Platform support changes over time

Objective measures

» Defects confirmed as ‘real’ by the
developers

— A high False Positive rate would bring the
defect count metric into question

— Would also affect future developer trust in the
analysis tool

Subjective measures

* Anecdotal comments by developers

— Informative, but not comparable between
projects

 Community feedback

— Dependent on the nature of each project’'s
community

Subjective measures

« ‘Support Load’ reduction

— Difficult to quantify in an open source
environment, due to the variety of support
channels

Your Measures?

As In most engineering problems...

What do you want to minimize?
— Immediate Cost
— Long Term Cost
— Time

\\\\"
\\\\\ '
— Manpower \ @,

— Ongoing Support

Use Case — Samba & Coverity

« Samba
— Open source networking suite
— Provides Microsoft protocol compatibility
— International team, started in Australia
— Project founded in 1992
— ~300KLOC -> 850KLOC 2006 -NOW

Use Case — Samba & Coverity

« Started reqgular scanning March 2006
* 14 Developers accessing the results
« Database avallable 24/7, SAAS

 New analysis every 2 days on average
— (797 builds in database)

Use Case — Samba & Coverity

« Static Analysis defect counts, 310KLOC

Defect Count

m Defect Count
I I I -
0
© ©
Q Q
Q
W &

250

200 -
150 -
100 -
50 -

0 -

©
Q
Q
’1/ v Vv Vv v ‘1/
& & s N
DA S IS S I

© © ©
X X X

Use Case — Samba & Coverity

Defect Count
250

Day 1: Fixed

203 197
4 NULL Pointer derefs 200 -
10 Resource leaks
1 Uninitialized data 150
31 Use after free 135

113
99 m Defect Count
But — other changes 109 e Sree o
that day introduced 62
new defects
50 -
29
i =
0 = T T T T T T T - T 0 1

© © © © (o) © © o ©

Q Q Q Q Q \) Q Q \)

Q Q Q Q Q Q

W W v v \ W v v W
(b\"o n_.,<\ 'b\(b "‘D\q Q},\Q rb\,\'\ (b\,\"], Q},\‘b n_)\\b(

Use Case — Samba & Coverity

Defect Count

250

Day 2: Fixed

203 197
15 NULL Pointer derefs 200 -
4 Resource leaks
1 static buffer overrun
53 Use after free 135

113
3 returned NULL 99
2 bad comparison 100 - m Defect Count
75
1 Dead code 62
50 -
29
l 14
0 = T T T T T T T - T 0 1
© © © © (o) © © o ©
Q Q Q Q Q \) Q Q \)
Q Q Q Q Q Q Q
W W v v W W v v W
(b\"o n_.,<\ ‘b\(b "‘D\q Q},\Q rb\,\'\ (b\,\"], Q},\‘b n_)\\b(

Use Case — Samba & Coverity

118 if (brl lock) {
119 return False;
120 }

http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=114&lxfile=7488
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=115&lxfile=7488

Use Case — Samba & Coverity

Event func_conv: Suspicious implicit
conversion to function pointer:

"&brl lock == 0";

did you intend to call the function?
118 if (Ibrl lock) {

119 return False;

120 }

http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=114&lxfile=7488
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=115&lxfile=7488

Use Case — Samba & Coverity

6 8 8 /**'k*****************************

689 Lock a range of bytes.

6 9 0 **/

691

692 NTSTATUS brl lock(struct byte range lock *br_Ick,
693 uintl6 smbpid,

694 struct process id pid,

695 br_off start,

696 br_off size,

697 enum brl_type lock type,
698 enum brl flavour lock flav,
699 BOOL *my_lock ctx)
700 {

701 NTSTATUS ret;

702 struct lock struct lock;

703

704 *my lock ctx = False;

http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=788&lxfile=7633
X:/789
X:/790
X:/791
X:/792
X:/793
X:/794
X:/795
X:/797
X:/798
X:/800
X:/801
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=802&lxfile=7633
X:/803
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=804&lxfile=7633
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=805&lxfile=7633
X:/806
X:/807
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=808&lxfile=7633
X:/809
X:/810
X:/811
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=812&lxfile=7633
X:/813

Use Case — Samba & Coverity

Defect Count
250

200

150

m Defect Count

100

50

Use Case — Samba & Coverity

Defect Count

250
200 -
150 -
100 - m Defect Count
50
B | S || PP | (][
& i@i@i@f\@r&%c&%@i&i@\r&i@@% Qi@\r&i@r&i@@i@@i@ $ S

Use Case — Samba & Coverity

Defect Count
250

200 -

150 -

100 - Would this graph be solid blue? " Defect Count

50
JIL P || P | 11
© G O O O O O O O o « A &Q A A& Q& QA
FFSFSFFSFSLSLFSFSESFSSFS ST S S S
U U R R R R A VR VR VR VR
RGO LI \@\\@\%@ SR RGN GRS

Use Case — Samba & Coverity

Defect Count
250

200

150

be solid blue?

100

50

& O O L O O O O L O & A& QA A
O L O O O O O O O O O O QO O QO O O O
A" QO N O QO O OSSOSO OO QS
ORI IR IR IR IR IR R I Ol O Ol Ol OO S SRS
r@b@o@&\«\@\@@\@\@f@@f@\@@@@o@«\@\‘a

m Defect Count

Use Case — Samba & Coverity

» Defects confirmed as ‘real’ by the
developers

13 defects marked False Positive
216 total defects

13/216 =6%

Use Case — Samba & Coverity

* Subjective measures
— Anecdotal comments by developers

“This tool has become part of our process”

Use Case — Samba & Coverity

“Using [...] source code analysis technology
IS like having a developer on the team with
an inhuman attention to detail, who points
out all the corner cases and boundary
conditions developers didn’t consider
when they first wrote the code.”

Use Case — Samba & Coverity

“| code more carefully, because | know my
laziness will be caught and embarrass

me.

Use Case — Samba & Coverity

« Community feedback

Use Case — Samba & Coverity

« Community feedback

— Invited to give opening keynote at annual
Samba conference in 2009

Open Source Reports

* Whitepaper series - http://scan.coverity.com/report/
— Open Source Report 2008
— Open Source Report 2009
— Open Source Report 2010 (Android & Supply Chain)

e

Most Commonly Found g

Defects

Frequency of Functions by Length

Looking at the most commonly found defects in aade can help facmilate ideas about what Kind of code constructs L oy
‘may cause developers t make more errors. A type of defect might be more fragquendy found because it involves eode
canstrucis that are hardec b0 understand, more frequently used, or imvabre 2 hard- -use progamming interfoce.
Programming defects at this Level arc often the rot cause of crashes, accurity volncrabilifics, and other program

mishehavion v
P
Ranking Defect Types ‘
From the inception of the Scan site in 2006 until May 2008, Scan discovered an aggregate of 27,752 defocts among P
all the apen seurse projects participatingin Szan, That nummber inerased to 2 total of 38,453 defoces found by E "
August 2009, Tn thia section, we ceonsclidated all defects aceoss all participating open source projects and caegocised . : iy
them by defect types. The renults are shown in the following table. = bl u | 2
o
T T T T T 1
ype 2008 2009 O M1 ST S 364 L0210 @ B 24 1 El W om om o=
e
NULL Pointer Deference 27.95% 27 81% LOE IN FUNETION O I pLNeTan
Resource Leak 25.73% 23.34%
Unintentional Ignored Expremions 9,760 9.71%
Use Before Test (NULL) 3,000 8354
Use After Free 6.46% 591%
D T T] 5.19% ST 0558 | = The graph iz quite smeoth until roughly the 200 LOC mack. At that point, it becomes rougher, and the data points
e = — = = become more spase. This is an indication of where our source code data zet begine to become moce sparze. As the Szan
TR == = iR 2 data set oontinues to grow, we would expezt ba see a very gradual extension of the smaoth asea.
ainitialized Values Rea 500) 910 P
Klsmmaf Loa of ot el Mgt o il i AT A While the 2008 report showed mumbers that were aggregared on a per-project basis, and happened o find that averages
Type und Allocation Size Mismatch 052% L10% 048w T 0 across all projects were in the neighborhood of a modern programmer's sereen size, 1 close-up lock at the funcfion
Buffer Overflow (dynamically allocated) 031% 021% a0 | o ietribution shows no dissentinuity near the length fanctions. If prog: did have any signifs y
Use Before Test (negative) 021 0.18% oo | o to break functions up, by refactoring, when the semen-length boundary i pasted, then the graph thould show one ar
more sudden draps at the common screen lengths s the functions over that size are broken up, and contibute to the
Footnote: For more descriptive information on these defect types, see Appendis D. distribuation of shorter functions to the Left of the limit
The 2008 Scan results in the above table are generated using the 2006 version of Coverity Static Analysis. This Since the graph is eleasly smooth, with na such drps, poog ither have no sch y to breale fianctions
2006 vervion was alea used for the 2009 analysie of open source projects on Rung 1. Howeves, for projects an at screen length, or do s rarely eacugh for it to have oo visible impact.

Finng 2, 2 newer version of Coverity Static Analysis was uzed to generste the 2009 resules, This accounts for the
o largest changes in the distribution af results from 2008 to 2009, Prajects on Rung 2 had resolved all of theic
caclicr identified resouree leaks, 50 the latest runs have a smaller percentage of that ype of defict. Improverments
the newer version of Coverity Static Analysis used for Rung 2 projects identify a Large number of additional cases
of uninitialized valuer, leading to the increase in that category becween 2008 and 2009, Viewsd alene, that one
capakiliey change rrised nninitialized valne ermars o over 210 of the defect distributian for projects now on Rung 2

http://scan.coverity.com/report/

Q&A

* Questions?

