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Coverity Scan

 Launched, March 2006

 DHS sponsored “Open Source Hardening Project”
— 2006-2009

« Using Coverity’s commercial static analysis product to
identify bugs at the source code level

« 35 open source projects on day one
« Since grown to 300+ projects

« QOver 15,000 bugs fixed



Evaluating Effectiveness (‘ coverity

There Is no single measure of the
effectiveness of a tool on the software
development process.



Evaluating Effectiveness (‘ coverity

Since we can never run the same
development effort twice, with identical
teams, portions of this evaluation are highly
subjective.



Evaluating Effectiveness

* Objective measures
— Static Analysis produced defect counts
— Numbers of Bug Reports
— Defects confirmed as ‘real’ by the developers

* Subjective measures
— Anecdotal comments by developers
— Community feedback
— ‘Support Load’ reduction



Objective measures

« Static Analysis produced defect counts

— Good objective measure
* Reproducible
« Consistent
 Low effort to collect
« Automatable

« “Static Analysis Tools as Early Indicators of Pre-
Release Defect Density” - Microsoft Research
Paper



Objective measures

 Numbers of Bug Reports

— Potentially useful if all other factors are
controlled

— Not the case in our example

Multiple development branches

Concurrent new development during defect
resolution

Userbase changes over time
Platform support changes over time



Objective measures

» Defects confirmed as ‘real’ by the
developers

— A high False Positive rate would bring the
defect count metric into question

— Would also affect future developer trust in the
analysis tool



Subjective measures

* Anecdotal comments by developers

— Informative, but not comparable between
projects

 Community feedback

— Dependent on the nature of each project’'s
community



Subjective measures

« ‘Support Load’ reduction

— Difficult to quantify in an open source
environment, due to the variety of support
channels



Your Measures?

As In most engineering problems...

What do you want to minimize?
— Immediate Cost
— Long Term Cost
— Time

\\\\"
\\\\\ '
— Manpower \ @,

— Ongoing Support



Use Case — Samba & Coverity

« Samba
— Open source networking suite
— Provides Microsoft protocol compatibility
— International team, started in Australia
— Project founded in 1992
— ~300KLOC -> 850KLOC 2006 -NOW




Use Case — Samba & Coverity

« Started reqgular scanning March 2006
* 14 Developers accessing the results
« Database avallable 24/7, SAAS

 New analysis every 2 days on average
— (797 builds in database)



Use Case — Samba & Coverity

« Static Analysis defect counts, 310KLOC
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Use Case — Samba & Coverity
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Use Case — Samba & Coverity

Defect Count
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Day 2: Fixed
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1 static buffer overrun
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Use Case — Samba & Coverity

118 if (brl lock) {
119 return False;
120 }



http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=114&lxfile=7488
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=115&lxfile=7488

Use Case — Samba & Coverity

Event func_conv: Suspicious implicit
conversion to function pointer:

"&brl lock == 0";

did you intend to call the function?
118 if (Ibrl lock) {

119 return False;

120 }



http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=114&lxfile=7488
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=115&lxfile=7488

Use Case — Samba & Coverity

6 8 8 /**********************************************'k*****************************

689 Lock a range of bytes.

6 9 0 ****************************************************************************/

691

692 NTSTATUS brl lock(struct byte range lock *br_Ick,
693 uintl6 smbpid,

694 struct process id pid,

695 br_off start,

696 br_off size,

697 enum brl_type lock type,
698 enum brl flavour lock flav,
699 BOOL *my_lock ctx)
700 {

701 NTSTATUS ret;

702 struct lock struct lock;

703

704 *my lock ctx = False;



http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=788&lxfile=7633
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http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=804&lxfile=7633
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=805&lxfile=7633
X:/806
X:/807
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=808&lxfile=7633
X:/809
X:/810
X:/811
http://scan2.coverity.com:7461/cov.cgi?clicked=1&events=9951&line=0&prec=%2Fcov.cgi%3Fc%3DAAAAAADA7g%26cid%3D196%26q%3D6%26runs%3D13%26t%3D6%26v%3D1&run=13&t=12&v=1&xref=812&lxfile=7633
X:/813

Use Case — Samba & Coverity

Defect Count
250

200

150

m Defect Count

100

50




Use Case — Samba & Coverity

Defect Count

250
200 -
150 -
100 - m Defect Count
50
B | S || PP | (][
& i@i@i@f\@r&%c&%@i&i@\r&i@@% Qi@\r&i@r&i@@i@@i@ $ S



Use Case — Samba & Coverity

Defect Count
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Use Case — Samba & Coverity

Defect Count
250

200

150

be solid blue?

100

50

& O O L O O O O L O & A& QA A
O L O O O O O O O O O O QO O QO O O O
A" QO N O QO O OSSOSO OO QS
ORI IR IR IR IR IR R I Ol O Ol Ol OO S SRS
r@b@o@&\«\@\@@\@\@f@@f@\@@@@o@«\@\‘a

m Defect Count



Use Case — Samba & Coverity

» Defects confirmed as ‘real’ by the
developers

13 defects marked False Positive
216 total defects

13/216 =6%



Use Case — Samba & Coverity

* Subjective measures
— Anecdotal comments by developers

“This tool has become part of our process”



Use Case — Samba & Coverity

“Using [...] source code analysis technology
IS like having a developer on the team with
an inhuman attention to detail, who points
out all the corner cases and boundary
conditions developers didn’t consider
when they first wrote the code.”



Use Case — Samba & Coverity

“| code more carefully, because | know my
laziness will be caught and embarrass

me.



Use Case — Samba & Coverity

« Community feedback



Use Case — Samba & Coverity

« Community feedback

— Invited to give opening keynote at annual
Samba conference in 2009



Open Source Reports

* Whitepaper series - http://scan.coverity.com/report/
— Open Source Report 2008
— Open Source Report 2009
— Open Source Report 2010 (Android & Supply Chain)
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Frequency of Functions by Length

Looking at the most commonly found defects in aade can help facmilate ideas about what Kind of code constructs L oy
‘may cause developers t make more errors. A type of defect might be more fragquendy found because it involves eode
canstrucis that are hardec b0 understand, more frequently used, or imvabre 2 hard- -use progamming interfoce.
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Ranking Defect Types ‘
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Resource Leak 25.73% 23.34%
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Use Before Test (NULL) 3,000 8354
Use After Free 6.46% 591%
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http://scan.coverity.com/report/

Q&A

* Questions?



