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The freedom trend: F = me³



  

The Freedom principle

● Atomize and untether!
● Mainframe → workstation → laptop → mobile
● Integrated systems → shell commands
● Software-suite → FOSS → “app”
● Pre-programmed menus →  scripts → 

standalone promises
● Centralized control → local control

● Too much freedom: no control



  

The commerce principle

● Keep it simple and agile and re-usable
● Broad appeal, no expertise required
● Integrate complex parts into a black box
● Charge for the value of the simplicity

● Oversimplifying just holds you back



  

Freedom + commerce

● Make many small-smart boxes
● Easy to use, simple but powerful
● Seeking appropriate compromises

● This is the start of knowledge management

Redesigning the configuration language for Cfengine 3: 
free interface design, to conceal without removing 
configuration complexity: build your own coloured box



  

Configuring “freedom”
● The problems we face are scale and complexity as 

freedom is thrust upon us by social or environmental 
forces

● Infrastructure versus me

● Atomize

● Untether

● Configuration = choice + arrangement of parts

● Configuration under these circumstances has been 
done before...let's go back in time



  

Chapter 1: primæval soup



  

Homework 1:
How do you configure a glass of water?

MODELLING HINT (melt first):
molecules:

  "water"
    atoms => { "hydrogen", "hydrogen", "oxygen" };

bonds:

  "hydrogen"
    valency => "+1", # oxidation number
  container => glass;

  "oxygen"
    valency => "2",
  container => glass;



  

Homework  2:
Explain the difference between ice and a cloud?

ISOMORPHIC SCENARIO:
molecules:

  "computer"
    atoms => { "motherboard", "disk", "disk" };

bonds:

  "motherboard"
       disk_valency => "2",
    network_valency => "1",
          container => host_1;

  "disk"
       disk_valency => "+1",
          container => host_1;



  

Cfengine's “promise” model

● The principles for managing diversity are:

● Non-conflicting building blocks 

– (primitive elements)

● Connection interfaces 

– (possible bonds)

● Stable arrangements 

– (configurations)



  

Chapter 2:

Genes and molecular complexity



  

Molecular computing

● Re-digitizing configuration descriptions at a 
higher level
● Domain specific language (RNA) – speeds up 

evolution!

● In chemistry, there are two languages:
● Genes (to configure proteins)
● Proteins (to configure tissues)



  

“High level” 
configuration languages

peptides:

  "amylin"

      comment => "pancreatic beta cells",
   amino_code =>
             "KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY";

amino_acids:

  "K"
      comment => "Lysine",
       codons => { "AAA", "AAG" };



  

Have we gone too far?

● Given a supply of amylin, as a black box

● Can't reconfigure it into Tryptone even though there 
is an underlying freedom to do so

● Either need an easy supply of all black boxes or 
we've failed

● We constantly trade detail for flexibility

● There is a risk of oversimplifying



  

Homework 3:

How do you configure a dinosaur?



  

 (translation) Homework 3:

How do you configure AIX?



  

Self-healing enables freedom

● Underlying these languages are hidden stable 
processes
● Atomic electrical attraction
● DNA copying mechanisms
● Jigsaw shapes that fit/don't fit

● These mechanisms are stable (self-healing) 
and provide local independence
● No umbilical required
● Can happen in situ anywhere conditions are ok



  

The Myth of Centralization

● Single point of control, but single point of failure
● Hearts and minds?
● How does centralization actually help?



  

Chapter 3:

The IT-atious era 
and beyond...



  

IT management

● Atoms: files, processes, packages, machines, 
networks …

● Bonds: stable documented relationships 
(promises)

● Self-healing: don't just try to build, but maintain
● Scripts usually break all these principles
● Dehumanization is not replacing humans by 

machines but in making humans act like 
machines in the first place.



  

The role of FOSS

● Not specifically important – it could have 
happened differently

● Gave people like me a willing audience to 
introduce new technology
● Zero price = zero barrier to adoption
● Source code less important than flexibility
● Community of writers less important than 

discussion and verification

● A re-branding of the scientific discourse



  

Personal freedom condenses 
around us … the real cloud

● Like it or not we have to support IT freedoms

● Invisible infrastructure

● Lightweight devices that enable creativity

● Servers, phones, pads, apps... (the real cloud)

● This is complexity management, a form of 
knowledge management



  

Chapter 4:

At the KT boundary

Knowledge-Technology
Knowledge-Transfer



  

Environmental diversity

● Diversified infrastructure, supporting freedom
● Hosts not all alike (diversity)
● Break away from totalitarian centralization

● Companies increasingly see this cannot work
● Federated approaches
● Distributed and mobile
● Clouds and disposable VM resources

● Need powerful modelling to support this
● This is where Cfengine has remained strong



  

Refactoring old habits

● Build and monitoring → integrated services

● Independent monitoring is better?

● You don't fly a second plane to measure altitude

● Most monitoring tools do not offer any kind of 
scientific rigour in measurement anyway

● Doing and Knowing need to come together in a 
much less ad hoc way

● Here FOSS loyalties can get in the way of progress



  

Rehumanising system administration

● The challenge is now Knowledge
● Planning 
● Disseminating
● Quality assuring
● Understanding what you made!

● Good models bring simplicity and agility
● Based on atoms with few tethers

● Pedagogical and didactic skills return
● Humanities students can play an increasing role



  

Cfengine's promise model is an 
atomic knowledge model

files:

  “/etc/shadow”   { “security@my.org” },→

       comment => “standardize non LDAP passwords”,
    edit_lines => set_password(“root”,”xyz123”);

services:

 "Themes"
           service_policy => "start",
    service_dependencies => { "Alerter" },
          service_method => exmethod;



  

Free/Open Source?
● The source code is unimportant – social aspect is

● Insight and shared experience (knowledge)

● Assurances for users – risk reduction
● A lot of commercialization of FOSS – this is a sign that 

it is now considered valuable and mainstream, 
guarantees it a certain future

● To drive adoption of rational technology, it is 
helpful to have
● Low adoption price
● User communities

● Fan-bases and loyalties can hinder progress



  

Summary

Free adaptability, stability and complexity

Fewer dependencies + simple clear promises

→ clear expectations 
→  collaboration 

→ social ecosystem 
→ personal enablement

→ Freedom



  

Free Speech or Free Beer?
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