

The Future of Free/Open Source
Configuration Management

Mark Burgess

Cfengine
&

Dept of Computer Science
Oslo University College

The freedom trend: F = me³

The Freedom principle

● Atomize and untether!
● Mainframe → workstation → laptop → mobile
● Integrated systems → shell commands
● Software-suite → FOSS → “app”
● Pre-programmed menus → scripts →

standalone promises
● Centralized control → local control

● Too much freedom: no control

The commerce principle

● Keep it simple and agile and re-usable
● Broad appeal, no expertise required
● Integrate complex parts into a black box
● Charge for the value of the simplicity

● Oversimplifying just holds you back

Freedom + commerce

● Make many small-smart boxes
● Easy to use, simple but powerful
● Seeking appropriate compromises

● This is the start of knowledge management

Redesigning the configuration language for Cfengine 3:
free interface design, to conceal without removing
configuration complexity: build your own coloured box

Configuring “freedom”
● The problems we face are scale and complexity as

freedom is thrust upon us by social or environmental
forces

● Infrastructure versus me

● Atomize

● Untether

● Configuration = choice + arrangement of parts

● Configuration under these circumstances has been
done before...let's go back in time

Chapter 1: primæval soup

Homework 1:
How do you configure a glass of water?

MODELLING HINT (melt first):
molecules:

 "water"
 atoms => { "hydrogen", "hydrogen", "oxygen" };

bonds:

 "hydrogen"
 valency => "+1", # oxidation number
 container => glass;

 "oxygen"
 valency => "2",
 container => glass;

Homework 2:
Explain the difference between ice and a cloud?

ISOMORPHIC SCENARIO:
molecules:

 "computer"
 atoms => { "motherboard", "disk", "disk" };

bonds:

 "motherboard"
 disk_valency => "2",
 network_valency => "1",
 container => host_1;

 "disk"
 disk_valency => "+1",
 container => host_1;

Cfengine's “promise” model

● The principles for managing diversity are:

● Non-conflicting building blocks

– (primitive elements)

● Connection interfaces

– (possible bonds)

● Stable arrangements

– (configurations)

Chapter 2:

Genes and molecular complexity

Molecular computing

● Re-digitizing configuration descriptions at a
higher level
● Domain specific language (RNA) – speeds up

evolution!

● In chemistry, there are two languages:
● Genes (to configure proteins)
● Proteins (to configure tissues)

“High level”
configuration languages

peptides:

 "amylin"

 comment => "pancreatic beta cells",
 amino_code =>
 "KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY";

amino_acids:

 "K"
 comment => "Lysine",
 codons => { "AAA", "AAG" };

Have we gone too far?

● Given a supply of amylin, as a black box

● Can't reconfigure it into Tryptone even though there
is an underlying freedom to do so

● Either need an easy supply of all black boxes or
we've failed

● We constantly trade detail for flexibility

● There is a risk of oversimplifying

Homework 3:

How do you configure a dinosaur?

 (translation) Homework 3:

How do you configure AIX?

Self-healing enables freedom

● Underlying these languages are hidden stable
processes
● Atomic electrical attraction
● DNA copying mechanisms
● Jigsaw shapes that fit/don't fit

● These mechanisms are stable (self-healing)
and provide local independence
● No umbilical required
● Can happen in situ anywhere conditions are ok

The Myth of Centralization

● Single point of control, but single point of failure
● Hearts and minds?
● How does centralization actually help?

Chapter 3:

The IT-atious era
and beyond...

IT management

● Atoms: files, processes, packages, machines,
networks …

● Bonds: stable documented relationships
(promises)

● Self-healing: don't just try to build, but maintain
● Scripts usually break all these principles
● Dehumanization is not replacing humans by

machines but in making humans act like
machines in the first place.

The role of FOSS

● Not specifically important – it could have
happened differently

● Gave people like me a willing audience to
introduce new technology
● Zero price = zero barrier to adoption
● Source code less important than flexibility
● Community of writers less important than

discussion and verification

● A re-branding of the scientific discourse

Personal freedom condenses
around us … the real cloud

● Like it or not we have to support IT freedoms

● Invisible infrastructure

● Lightweight devices that enable creativity

● Servers, phones, pads, apps... (the real cloud)

● This is complexity management, a form of
knowledge management

Chapter 4:

At the KT boundary

Knowledge-Technology
Knowledge-Transfer

Environmental diversity

● Diversified infrastructure, supporting freedom
● Hosts not all alike (diversity)
● Break away from totalitarian centralization

● Companies increasingly see this cannot work
● Federated approaches
● Distributed and mobile
● Clouds and disposable VM resources

● Need powerful modelling to support this
● This is where Cfengine has remained strong

Refactoring old habits

● Build and monitoring → integrated services

● Independent monitoring is better?

● You don't fly a second plane to measure altitude

● Most monitoring tools do not offer any kind of
scientific rigour in measurement anyway

● Doing and Knowing need to come together in a
much less ad hoc way

● Here FOSS loyalties can get in the way of progress

Rehumanising system administration

● The challenge is now Knowledge
● Planning
● Disseminating
● Quality assuring
● Understanding what you made!

● Good models bring simplicity and agility
● Based on atoms with few tethers

● Pedagogical and didactic skills return
● Humanities students can play an increasing role

Cfengine's promise model is an
atomic knowledge model

files:

 “/etc/shadow” { “security@my.org” },→

 comment => “standardize non LDAP passwords”,
 edit_lines => set_password(“root”,”xyz123”);

services:

 "Themes"
 service_policy => "start",
 service_dependencies => { "Alerter" },
 service_method => exmethod;

Free/Open Source?
● The source code is unimportant – social aspect is

● Insight and shared experience (knowledge)

● Assurances for users – risk reduction
● A lot of commercialization of FOSS – this is a sign that

it is now considered valuable and mainstream,
guarantees it a certain future

● To drive adoption of rational technology, it is
helpful to have
● Low adoption price
● User communities

● Fan-bases and loyalties can hinder progress

Summary

Free adaptability, stability and complexity

Fewer dependencies + simple clear promises

→ clear expectations
→ collaboration

→ social ecosystem
→ personal enablement

→ Freedom

Free Speech or Free Beer?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

