
11

Metrics for Success:
Performance Analysis 101

February 21, 2008

Kuldip Oberoi
Developer Tools
Sun Microsystems, Inc.

2/21/09 2

Agenda

• Application Performance

• Compiling for performance

• Profiling for performance

• Closing remarks

2/21/09 3

Sun Studio software
C/C++/Fortran tooling for the multi-core era

• Adoption increased
100+% over 2 years.
Large footprint in
enterprise/technical
accts & growth in
open src usage

• #1 IDE in the Evans
survey for
Performance of
Resulting
Applications
category

• Intel, AMD, Sun &
Fujitsu
Partnerships

z

• Parallelism – feature-rich toolchain
(auto-parallelizing compilers, thread
analysis / debugging / profiling,
OpenMP support, ...) & MPI support via
Sun HPC ClusterTools

• Performance – dozens of industry
benchmark records in the past year
over Intel, AMD, Sun, & Fujitsu
architectures

• Productivity – NetBeans-based IDE,
code & memory debuggers, application
profiler

• Platforms – Simplified dev across
architectures & OSs (Solaris OS,
OpenSolaris OS, Linux)

2/21/09 4

Sun Studio Software Overview
Integrated Toolchain

• Record-setting parallelizing C/C++/Fortran
Compilers with autopar

• NetBeans-based IDE

• Stable, Scriptable, Multilingual Debugger (dbx)

• Memory Debugger- leak, access, usage (RTC)

• Application Profiling Tools (Performance
Analyzer)

• Multi-core Optimizations, Multithreaded High
Performance Libraries

• OpenMP API Support

• Multithreading Tools- Thread Analysis

http://developers.sun.com/sunstudio

FREE

2/21/09 5

Agenda

• Application Performance

• Compiling for performance

• Profiling for performance

• Closing remarks

2/21/09 6

Why Care about Performance?

• Because your company cares
> Faster code => greater productivity => lower cost

• Because your peers and customers care
> Better performance => less HW => lower cost

• Because it's interesting and suprising
> Coding is based on assumptions about behavior
> Performance problems arise from disconnects

• Because it's easy to do
> Simple runs, automated runs

2/21/09 7

What's a Performance Problem?

• Subjective criteria:
> It takes too long to finish
> It responds too slowly

• Objective critera:
> It can't handle the required load
> It consumes too many resources to do its work

• Is it worth fixing?
> Cost of fixing vs. aggregate cost of problem

• Most untuned codes have low-hanging fruit!

2/21/09 8

Where does performance come from?

• Not the real question...
> Every application has a maximum theoretical

performance
> Design decisions and implementation can deliver lower

actual performance

• Alternative: Where has performance been lost?
> Need to identify where the time is spent
> Then determine what can be done about it

2/21/09 9

Where performance goes to
• Performance opportunities:

> Algorithms
> Structure
> Compiler flags
> Hand-tuned code

Development stage

Algorithms
Structure

Impact

Compiler flags

Hand-tuned
code

2/21/09 10

Algorithmic complexity
• How many operations?
• Classic example:

> Bubble sort O(n2)
> Quick sort O(nlog(n))

• Sun Studio libraries have
optimized code
> perflib (BLAS, FFTs, etc)
> medialib (images, codecs)
> Optimized maths libraries

10 50 100 150
0

5000

10000

15000

20000

25000

Number of elements

N
um

be
r

of
 o

pe
ra

tio
ns

Bub
bl

e
so

rt

Quick sort

2/21/09 11

Compiler flags
• The compiler's job:

> Produce the best code
> Given little knowledge of developer's intent
> Best code regardless of coding style

• Increasing optimization
> Leads to improved performance
> Relies on standard conforming source code

• Does a better job with
> Visibility of more of the code
> More information about the intent of the developer

2/21/09 12

Hand-tuned code
• Examples:

> Special case code for the common situation
> Assembly language versions of key routines

• Cons:
> Time consuming
> Inflexible (e.g. workload specific)
> Platform specific

• Good examples:
> Use of language standards to provide compiler with more

information (e.g. restrict keyword)

2/21/09 13

Perspective on optimization
• Algorithms, structures, and compiler flags

> High-level change
> Useful for all platforms
> Improve the application for all workloads

• Tweaks, hand-code
> Low-level (localised) change
> Platform specific
> Often already done by the compiler

• So:
> Focus on the high-level
> Unless the low-level gains are clear

2/21/09 14

Methodology / Tools Used

Ensure Best Builds:
Latest Compiler
Optimization flags
Profile feedback
Insert #pragmas

Identify Hot Spots:
gprof(function timings)
tcov(line counts)
analyzer (many stats)

Check Libraries Used:
optimized math libs
libsunperf
medialib
Write special routines?

Get Execution Stats:
cputrack(perf counters)
locstat(lock containment)
trapstat(traps)

Study and rewrite Source as appropriate

Study and rewrite assembly as appropriate

2/21/09 15

Agenda

• Application Performance

• Compiling for performance

• Profiling for performance

• Closing remarks

2/21/09 16

Choosing compiler flags
• Use the flags

> That you understand
> That you need (i.e. make a difference)

• Don't use flags
> That you don't understand
> That don't have an impact

2/21/09 17

Optimization
• Rule:

> No optimization flags means no optimization

• Suggestions:
> Use at least -O
> Try -fast

• Notes:
> Compile and link with the same flags

2/21/09 18

Debug information
• Always generate debug information

> -g for C/Fortran
> -g0 for C++

• Also useful for profiling
• No/minimal performance impact

2/21/09 19

Exploring -fast
• -fast is a macro-flag:

> Enables a number of potentially useful optimisations
> May not be suitable for all situations

• Assumes build machine = run machine
> Use -xtarget= to specify otherwise

• Enables floating point simplification
> Use -fsimple=0 -fns=no otherwise

• Assumes basic pointer types do not alias
> Use -xalias_level=any otherwise

• Flags are parsed from left to right
> Override by placing flags on right

2/21/09 20

Target hardware
• Not all processors implement the same instructions

> Application will not run if instructions are not
implemented

• If build machine is machine that will run binary:
> -xtarget=native

• For binaries that will run on a wide range of
machines:
> SPARC: -xtarget=generic
-xarch=sparcvis2

> x86: -xtarget=generic -xarch=sse2

2/21/09 21

Instruction set extensions (SSE/x86)

• Instruction set extensions on x86
• Single Instruction Multiple Data (SIMD)

> e.g. two parallel add operations in a single instruction

• Enable generation with:
> -xtarget=generic -xarch=sse2
-xvector=simd

2/21/09 22

Target hardware 32-bit or 64-bit

• 32-bit (-m32) can address 4GB of memory

• 64-bit (-m64) can address >>4GB of memory
• 64-bit: pointers and longs are 8 bytes

> => larger memory footprint
> => slower

• x86 64-bit has
> More registers, Better ABI
> => faster
> For x86 64-bit faster except when dominated by

increased memory footprint

2/21/09 23

Inlining and cross-file optimisation
• Inlining:

> Avoids call overhead
> Provides more opportunities to code optimisation
> Increases code size

• Within file inlining at -xO4

• Crossfile inlining at -xipo
> Inlines between source files
> Reduces impact of source code structuring
> Can increase compile time

2/21/09 24

Profile feedback
• Profile feedback enables the compiler

> To see the runtime behavior of the application
> To make better code layout decision
> To make the right inlining decisions

• Three step process:
> Compile with
-xprofile=collect:/dir/profile

> Run with training workload
> Compile with -xprofile=use:/dir/profile

• Very useful for applications containing lots of
decision logic

2/21/09 25

Agenda

• Application Performance

• Compiling for performance

• Profiling for performance

• Closing remarks

2/21/09 26

Good practices

• Always profile your application
> Is the time being spent in the important code?
> Are there obvious hot-spots to improve?
> How does the profile change with the workload?

• Amdahl's law
> Limit on performance gain is the time spent in the slow code

• Fix performance issues
> But make the fixes at the highest possible level of

abstraction

2/21/09 27

Why use Sun Studio Tools? (I)

• The work for production code, production runs
> Runs from tens of seconds through hours

• They measure real behavior
> Fully optimized and parallelized applications
> Java HotSpot enabled

• They have minimal dilation and distortion
> ~5% for typical apps, ~10% for Java apps

• Supports code compile with Sun Studio & GNU
compilers

• They're FREE for Solaris & Linux

2/21/09 28

Why use Sun Studio Tools? (II)

• They make things as simple as possible
> Show data in the user's source model
> Including OpenMP, MPI, Java, threads, etc.

• ..., but no simpler
> Show exactly what the compiler did

> Inlines, outlines, clones, parallel routines
> Show what JVM did

> Interpreted methods, HotSpot-compiled methods
> GC & HotSpot-compiler activities

2/21/09 29

Questions

• What can I change to improve perforance?
• Which resources are being used?
• Where are they being used?
• Single-threaded

> Is the CPU being used efficiently?
> Memory subsystem delays? (TLBs, caches)
> I/O subsystem problems? (disk, network, paging)

• Multi-threaded
> Similar to single-threaded &
> Load unbalanced? Lock contention? memory/cache

contention?

2/21/09 30

Gathering profiles
• Use -g/-g0 for attribution of time to source line
• Gather profile with:

> collect <app> <params>
> collect -P <pid>

• Analyse profile with:
> analyzer test.<N>.er
> er_print test.<N>.er

Application profile

Caller-Callee

Source level profile

2/21/09 34

Performance Analyzer - Timeline

2/21/09 35

DEMO

2/21/09 36

Agenda

• Application Performance

• Compiling for performance

• Profiling for performance

• Closing remarks

2/21/09 37

The checklist
• Build with optimization

> At least -O

• Build with debug enabled
> -g (-g0 for C++)

• Profile
> collect <app> <params>

2/21/09 38

Optimization: Increasing optimisation
• Increased optimization (-fast)

> Typically improved performance
> Be aware of the optimisations enabled

• Use crossfile optimization (-xipo)
> Typically good for all codes

2/21/09 39

Optimization: Increasing
information
• Profile feedback to give more information

> -xprofile=[collect:|use:]
> Good for all codes
> Particularly helpful for inlining and branches

2/21/09 40

Optimization: Leveraging libraries
• If time is spent in library code:

> Supplied optimized maths functions
-xlibmil -xlibmopt

> Optimized STL for C++
-library=stlport4

> The performance library
-library=sunperf

2/21/09 41

Summary
• Always profile
• Always use optimization

2/21/09 42

Gains from Tuning Categories

Tuning Category Typical Range of Gain

Source Change 25-100%

Compiler Flags 5-20%

Use of libraries 25-200%

Assembly coding / tweaking 5-20%

Manual prefetching 5-30%

TLB thrashing/cache 20-100%

Using vis/inlines/micro-vectorization 100-200%

2/21/09 43

4444

Metrics for Success:
Performance Analysis 101

Thanks!!

Kuldip Oberoi
koberoi@sun.com
http://koberoi.com

mailto:koberoi@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

