

Metrics for Success: Performance Analysis 101

February 21, 2008

Kuldip Oberoi Developer Tools Sun Microsystems, Inc.

Agenda

- Application Performance
- Compiling for performance
- Profiling for performance
- Closing remarks

Sun Studio software C/C++/Fortran tooling for the multi-core era

- Adoption increased 100+% over 2 years. Large footprint in accts & growth in open src usage
- **#1 IDE in the Evans** survey for Performance of Resulting Applications category

Intel, AMD, Sun & Fujitsu Partnerships

compiler and tool for application development on Solaris and Linux operating sustems. Now, it's rising to a new level of capability and performance.

The latest release of Sun Studio 12 software accelerates application performance while reducing time-to-market through parallelizing C, C++, and Fortran compilers and tools for Solaris and Linux platforms running on x86 and x64 platforms. A free application, this software uses the processing power in AMD processor-based systems to provide enhanced performance for applications - thus realizing outstanding results from multithreaded applications.

Sun Studio 12 software uses innovative optimization techniques on x86 sustems to provide up to 25 percent better performance on compute-intensive tasks and up to 80 percent better performance for memoru-intensive, industru-recognized benchmarks than open source alternatives

- Parallelism feature-rich toolchain (auto-parallelizing compilers, thread analysis / debugging / profiling, OpenMP support, ...) & MPI support via Sun HPC ClusterTools
- **<u>Performance</u>** dozens of industry benchmark records in the past year over Intel, AMD, Sun, & Fujitsu architectures
 - <u>Productivity</u> NetBeans-based IDE, code & memory debuggers, application profiler

<u>Platforms</u> – Simplified dev across architectures & OSs (Solaris OS, **OpenSolaris OS**, Linux)

Sun Studio Software Overview

Integrated Toolchain

- Record-setting parallelizing C/C++/Fortran Compilers with autopar
- NetBeans-based IDE
 - Stable, Scriptable, Multilingual Debugger (dbx)
 - Memory Debugger- leak, access, usage (RTC)
 - Application Profiling Tools (Performance Analyzer)
- Multi-core Optimizations, Multithreaded High Performance Libraries
- OpenMP API Support
- Multithreading Tools- Thread Analysis

http://developers.sun.com/sunstudio

Agenda

- Application Performance
- Compiling for performance
- Profiling for performance
- Closing remarks

Why Care about Performance?

- Because your company cares
 Faster code => greater productivity => lower cost
- Because your peers and customers care
 > Better performance => less HW => lower cost
- Because it's interesting and suprising
 - > Coding is based on assumptions about behavior
 - > Performance problems arise from disconnects
- Because it's easy to do
 - > Simple runs, automated runs

What's a Performance Problem?

- Subjective criteria:
 - > It takes too long to finish
 - It responds too slowly
- Objective critera:
 - It can't handle the required load
 - It consumes too many resources to do its work
- Is it worth fixing?
 - > Cost of fixing vs. aggregate cost of problem
- Most untuned codes have low-hanging fruit!

Where does performance come from?

- Not the real question...
 - Every application has a maximum theoretical performance
 - > Design decisions and implementation can deliver lower actual performance
- Alternative: Where has performance been lost?
 - Need to identify where the time is spent
 - > Then determine what can be done about it

Where performance goes to

• Performance opportunities:

- > Algorithms
- > Structure
- > Compiler flags
- > Hand-tuned code

Algorithmic complexity

- How many operations?
- Classic example:
 > Bubble sort O(n²)
 > Quick sort O(nlog(n))
- Sun Studio libraries have optimized code
 - > perflib (BLAS, FFTs, etc)
 - > medialib (images, codecs)
 - > Optimized maths libraries

Compiler flags

- The compiler's job:
 - > Produce the best code
 - > Given little knowledge of developer's intent
 - > Best code regardless of coding style
- Increasing optimization
 - > Leads to improved performance
 - > Relies on standard conforming source code
- Does a better job with
 - > Visibility of more of the code
 - More information about the intent of the developer

Hand-tuned code

- Examples:
 - > Special case code for the common situation
 - > Assembly language versions of key routines
- Cons:
 - > Time consuming
 - > Inflexible (e.g. workload specific)
 - > Platform specific
- Good examples:
 - Use of language standards to provide compiler with more information (e.g. restrict keyword)

Perspective on optimization

- Algorithms, structures, and compiler flags
 - > High-level change
 - > Useful for all platforms
 - > Improve the application for all workloads
- Tweaks, hand-code
 - > Low-level (localised) change
 - > Platform specific
 - > Often already done by the compiler
- So:
 - > Focus on the high-level
 - > Unless the low-level gains are clear

Methodology / Tools Used

Study and rewrite assembly as appropriate

Agenda

- Application Performance
- Compiling for performance
- Profiling for performance
- Closing remarks

Choosing compiler flags

Use the flags

- > That you understand
- > That you need (i.e. make a difference)
- Don't use flags
 - > That you don't understand
 - > That don't have an impact

Optimization

- Rule:
 - > No optimization flags means no optimization
- Suggestions:
 - > Use at least –O
 - > Try -fast
- Notes:
 - > Compile and link with the same flags

Debug information

- Always generate debug information
 - -g for C/Fortran
 - > -g0 for C++
- Also useful for profiling
- No/minimal performance impact

Exploring -fast

- -fast is a macro-flag:
 - > Enables a number of potentially useful optimisations
 - May not be suitable for all situations
- Assumes build machine = run machine
 > Use -xtarget= to specify otherwise
- Enables floating point simplification
 > Use -fsimple=0 -fns=no otherwise
- Assumes basic pointer types do not alias
 > Use -xalias_level=any otherwise
- Flags are parsed from left to right
 - > Override by placing flags on right

Target hardware

- Not all processors implement the same instructions
 - > Application will not run if instructions are not implemented
- If build machine is machine that will run binary:
 -xtarget=native
- For binaries that will run on a wide range of machines:
 - > SPARC: -xtarget=generic -xarch=sparcvis2
 - > X86: -xtarget=generic -xarch=sse2

Instruction set extensions (SSE/x86)

- Instruction set extensions on x86
- Single Instruction Multiple Data (SIMD)
 e.g. two parallel add operations in a single instruction
- Enable generation with:
 - > -xtarget=generic -xarch=sse2
 -xvector=simd

Target hardware 32-bit or 64-bit

- 32-bit (-m32) can address 4GB of memory
- 64-bit (-m64) can address >>4GB of memory
- 64-bit: pointers and longs are 8 bytes
 > => larger memory footprint
 - > => slower
- x86 64-bit has
 - > More registers, Better ABI
 - > => faster
 - For x86 64-bit faster except when dominated by increased memory footprint

Inlining and cross-file optimisation

- Inlining:
 - > Avoids call overhead
 - > Provides more opportunities to code optimisation
 - > Increases code size
- Within file inlining at -xO4
- Crossfile inlining at -xipo
 - > Inlines between source files
 - > Reduces impact of source code structuring
 - > Can increase compile time

Profile feedback

- Profile feedback enables the compiler
 - > To see the runtime behavior of the application
 - > To make better code layout decision
 - > To make the right inlining decisions
- Three step process:
 - > Compile with
 -xprofile=collect:/dir/profile
 - > Run with training workload
 - > Compile with -xprofile=use:/dir/profile
- Very useful for applications containing lots of decision logic

Agenda

- Application Performance
- Compiling for performance
- Profiling for performance
- Closing remarks

Good practices

- Always profile your application
 - > Is the time being spent in the important code?
 - > Are there obvious hot-spots to improve?
 - > How does the profile change with the workload?
- Amdahl's law
 - > Limit on performance gain is the time spent in the slow code
- Fix performance issues
 - > But make the fixes at the highest possible level of abstraction

Why use Sun Studio Tools? (I)

- The work for production code, production runs
 > Runs from tens of seconds through hours
- They measure real behavior
 - > Fully optimized and parallelized applications
 - > Java HotSpot enabled
- They have minimal dilation and distortion
 ~5% for typical apps, ~10% for Java apps
- Supports code compile with Sun Studio & GNU compilers
- They're *FREE* for Solaris & Linux

Why use Sun Studio Tools? (II)

- They make things as simple as possible
 - > Show data in the user's source model
 - Including OpenMP, MPI, Java, threads, etc.
- ..., but no simpler
 - > Show exactly what the compiler did
 - Inlines, outlines, clones, parallel routines
 - > Show what JVM did
 - Interpreted methods, HotSpot-compiled methods
 - > GC & HotSpot-compiler activities

Questions

- What can I change to improve perforance?
- Which resources are being used?
- Where are they being used?
- Single-threaded
 - > Is the CPU being used efficiently?
 - > Memory subsystem delays? (TLBs, caches)
 - > I/O subsystem problems? (disk, network, paging)
- Multi-threaded
 - > Similar to single-threaded &
 - > Load unbalanced? Lock contention? memory/cache contention?

Gathering profiles

- Use -g/-g0 for attribution of time to source line
- Gather profile with:
 collect <app> <params>
 collect -P <pid>
- Analyse profile with:

 analyzer test.
 er_print test.

Application profile

11		Sun Studio Analyzer [test.2.er]	_ 🗆 🗙		
<u>File</u> <u>V</u> iew	Timeli <u>n</u> e	e <u>H</u> elp			
🕺 📾 🛤 💵 🖺 🖀 🖷 🖳 🧃 👅 🎟					
Function	s Caller:	s-Callees Source Disassembly Timeline Experiments	4 }		
<mark>.¤. User</mark> CPU ₹ (sec.)	器 User CPU (sec.)	Name			
11.838	11.838	<total></total>			
11.818	11.838	main			
0.020	0.020	_brk_unlocked			
0.	0.020	malloc			
0.	0.020	_malloc_unlocked			
0.	0.020	_morecore			
0.	0.020	sbrk			
0.	0.020	_sbrk_unlocked			
0.	11.838	_start			
			•		

Caller-Callee

-	Performance Analyzer [test.1.er]						
Ēil	<u>File V</u> iew <u>T</u> imeline <u>H</u> elp						
	📾 🛤 🖳 📮 🖼 📾 📾 📾 💼 📢 🗈 🗢 🤜 🔍 🍳 Find Text: 🔍 👼 🖄						
F	Functions Callers-Callees Source Lines Disassembly PCs Timeline LeakList Statistics Experiments Image: Callers-Callees Statistics Experiments Image: Callers-Callees Statistics Experiments Image: Callers-Callees Statistics Experiments Image: Callers-Callees Callers-Callees Statistics Experiments Image: Callers-Callees Callers-C						
Ύβ	↓2 User ♥ (sec.) 53.237 7.785	₽ User CPU (sec.) 5.574 15.181	₩ User CPU (sec.) 84.299 138.347	Name Quiesce Search			
 ¢	42.400	42.400		Evaluate			
	9.216	9.216	9.216	EvaluatePawns			
	8.346	8.346	8.346	EvaluatePassedPawns			
	0.520	0.570	0.570	FirstOne			
	0.230	13.720	13.720	Swap			
12	0.200	0.400	0.400	LastOne			
	0.100	0.080	0.100	EvaluatePassedPawnRaces			
	0.010	0.010	0.010	EvaluateDraws			
					•		

Source level profile

Sun Studio Analyzer [test.2.er] 🗕 🗖					
<u>File</u> <u>V</u> iew	Timeli <u>n</u> e	<u>H</u> elp			
a 🛋 🖬 🖡 🖹 🖨 🖷 🖳 🏥 🖉 🖦					
Function	s Callers	s-Callees	Source Disassembly Timeline Experiments	4 	
県 User CPU (sec.)	品 User CPU (sec.)	Object 1	File: ./ml.c File: ./ml ject: <ml></ml>		
0.	0.	21. {	t inset(double ix, double iy)		
о.	ο.	22.	int iterations=0;		
ο.	0.	23.	double x=ix, y=iy, x2=x*x, y2=y*y;		
6.885	6.885	24.	while ((x2+y2<4) && (iterations<1000))		
		25.	{		
2.141	2.141	26.	y = 2 * x * y + iy;		
0.430	0.430	27.	$x = x^2 - y^2 + ix;$		
0.480	0.480	28.	x2 = x * x;		
1.411	1.411	29.	y2 = y * y;		
0.	0.	30.	iterations++;		
		31.	}		
0.	0.	32.	return iterations;		
		33. }		-	
•					

Performance Analyzer - Timeline

Performance Analyzer [test.1.er]					
File View Timeline Help					
arri Barr Mym = «I» 27 Q. Q. Q.	Find Text:				
Functions Callers-Callees Source Disassembly Timeline Experiments	Summary Event Legend Leak				
sec. 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 4t	Data for Current Timeline Selection				
	Experiment Name: FABS, FZ_JS, J142, B32, SAVE/test.1.er				
	Event Type: HW Counter Data (dcm)				
	Leaf Function: cfunc(int)				
	Timestamp (sec.): 41.988414				
	LWP: 1				
	Thread: 1				
	<u>C</u> PU: 0				
	Interval: 10008				
13 O	Clock Freq (MHz): 2191				
	Call Stack for Selected Event				
	cfunc(int) + 0x00000012, line 80 in "cloop.cc" Java jsynprog JavaCC + 0x0000006E, line 73 in "cloop.cc"				
1.4	Interpreter + 0x00006F55				
	Interpreter + 0x00000A3A call_stub + 0x0000002C				
	JavaCalls::call_helper(JavaValue*,methodHandle*,JavaCallA				
1.5	os::os_exception_wrapper(void(*)(JavaValue*,methodHandle JavaCalls::call(JavaValue*,methodHandle,JavaCallArgument				
Θ	jni_invoke_static(JNIEnv_*,JavaValue*, jobject*,JNICallType				
	jni_CallStaticVoidMethod + 0x00000112 main + 0x00000FFE				
1.8					
•					
0					
1.8					
0					

2/21/09

34

DEMO

Agenda

- Application Performance
- Compiling for performance
- Profiling for performance
- Closing remarks

The checklist

- Build with optimization
 > At least –O
- Build with debug enabled
 -g(-g0 for C++)
- Profile
 - > collect <app> <params>

Optimization: Increasing optimisation

- Increased optimization (-fast)
 - > Typically improved performance
 - > Be aware of the optimisations enabled
- Use crossfile optimization (-xipo)

> Typically good for all codes

Optimization: Increasing information

- Profile feedback to give more information
 - > -xprofile=[collect:|use:]
 - > Good for all codes
 - > Particularly helpful for inlining and branches

Optimization: Leveraging libraries

- If time is spent in library code:
 - Supplied optimized maths functions -xlibmil -xlibmopt
 - > Optimized STL for C++
 -library=stlport4
 - > The performance library -library=sunperf

Summary

- Always profile
- Always use optimization

Gains from Tuning Categories

Tuning Category	Typical Range of Gain
Source Change	25-100%
Compiler Flags	5-20%
Use of libraries	25-200%
Assembly coding / tweaking	5-20%
Manual prefetching	5-30%
TLB thrashing/cache	20-100%
Using vis/inlines/micro-vectorization	100-200%

43

Metrics for Success: Performance Analysis 101

Thanks!!

Kuldip Oberoi koberoi@sun.com http://koberoi.com

