

Application Performance

Compiling for performance

Profiling for performance

Closing remarks

2/21/09

S,
%

Sfm

Sun Studio software

C/C++/Fortran tooling for the multi-core era

00
Ose -
o opensolLaris

P,
soLaris £, -
e

 Parallelism - feature-rich toolchain
(auto-parallelizing compilers, thread
analysis / debugging / profiling,
OpenMP support, ...) & MPI support via

Sun HPC ClusterTools
Adoption increased | * Performance — dozens of industry
100+% over 2 years. ' benchmark records in the past year
Large footprint in over Intel, AMD, Sun, & Fujitsu
enterprise/technical AO?LELERATE architectures
accts & growthin =%
open src usage —_“ ¢ PI'OdUCtIVItV NetBeans-based |DE
#1IDEinthe Evans . = Ty " NS code & memory debuggers, appllcatlon
survey for 5 - THE BAKE'; profiler
Performance of i e, - Platforms - Simplified dev across
Resulting TUTTIIITIIO ™ architectures & 0Ss (Solaris 0S,
Applications g e QpenSolaris OS, Linux)
category il ot e oot
Intel, AMD, Sun & - [EEpSlrtaieatatas ¥
Fujitsu S 2 v o P opnsion s a1 15 s 261

crov\de up lc 25 peroent better performance on compute-intensive tasks and up to
bench

u
P a rt n e rs h I s B0 percent better performance for memary-intensive, industry-recognized benchmarks
than open source alternatives.

2/21/09 3

Sun Studio Software Overview

Integrated Toolchain

Record-setting parallelizing C/C++/Fortran
Compilers with autopar

NetBeans-based IDE
Stable, Scriptable, Multilingual Debugger (dbx)
Memory Debugger- leak, access, usage (RTC)

Application Profiling Tools (Performance
Analyzer)

Multi-core Optimizations, Multithreaded High
Performance Libraries

OpenMP API Support
Multithreading Tools- Thread Analysis

http://developers.sun.com/sunstudio

AMD

Wiy ’éiz
v C O)ee® -
SOI.a rIS O'.n DpEﬂSUlEfIS Opteron

2/21/09

2/21/09

Application Performance
Compiling for performance
Profiling for performance
Closing remarks

Why Care about Performance?

* Because your company cares
> Faster code => greater productivity => lower cost

» Because your peers and customers care
> Better performance => less HW => [ower cost

* Because It's interesting and suprising
> Coding is based on assumptions about behavior
> Performance problems arise from disconnects

* Because it's easy to do
> Simple runs, automated runs

2/21/09 6

What's a Performance Problem?

» Subjective criteria:
> |t takes too long to finish
> |t responds too slowly

» Objective critera:
> |t can't handle the required load
> |t consumes too many resources to do its work

* |s it worth fixing?
> Cost of fixing vs. aggregate cost of problem

» Most untuned codes have low-hanging fruit!

2/21/09 7

Where does performance come from?

» Not the real question...

> Every application has a maximum theoretical
performance

> Design decisions and implementation can deliver lower
actual performance

» Alternative: Where has performance been lost?
> Need to identify where the time is spent
> Then determine what can be done about it

2/21/09 8

Where performance goes to

» Performance opportunities:
> Algorithms

> Structure A |
> Compiler flags Algorithms
> Hand-tuned code Structure
ompiler flags
Hand-tuned
code

2/21/09

Impact

>
Development stage

Algorithmic complexity

* How many operations? 25000

> Classic example:
> Bubble sort O(n?)
> Quick sort O(nlog(n))

» Sun Studio libraries have
optimized code

> perflib (BLAS, FFTs, etc)
> medialib (images, codecs) 50
> Optimized maths libraries

20000~

15000 -

10000 -

Number of operations

Quick sort

0

T

10 50 100 150
Number of elements

2/21/09 10

Compiler flags

* The compiler's job:
> Produce the best code
> Given little knowledge of developer's intent
> Best code regardless of coding style

* Increasing optimization
> Leads to improved performance
> Relies on standard conforming source code

* Does a better job with
> Visibility of more of the code
> More information about the intent of the developer

2/21/09 11

Hand-tuned code

» Examples:
> Special case code for the common situation
> Assembly language versions of key routines

> Cons:
> Time consuming
> |nflexible (e.g. workload specific)
> Platform specific

» Good examples:

> Use of language standards to provide compiler with more
information (e.g. restrict keyword)

2/21/09 12

Perspective on optimization
> Algorithms, structures, and compiler flags

>
>
>

High-level change
Useful for all platforms

mprove the application for all workloads

» Tweaks, hand-code
> Low-level (localised) change
> Platform specific
> Often already done by the compiler

* S0:
> Focus on the high-level
> Unless the low-level gains are clear

2/21/09

¢

Sun

microsystems

13

2/21/09

Methodology / Tools Used

Latest Compiler

Profile feedback
Insert #pragmas

Ensure Best Builds:

Optimization flags

Check Libraries Used:
optimized math libs
libsunperf

medialib

Write special routines?

A

Identify Hot Spots:

gprof(function timings)
tcov(line counts)
analyzer (many stats)

A

i

Get Execution Stats:
cputrack(perf counters)
locstat(lock containment)
trapstat(traps)

Y

¢

A

Study and rewrite Source as appropriate

Study and rewrite assembly as appropriate

14

2/21/09

Application Performance
Compiling for performance
Profiling for performance
Closing remarks

15

Choosing compiler flags

» Use the flags
> That you understand
> That you need (i.e. make a difference)

* Don't use flags
> That you don't understand
> That don't have an impact

2/21/09

16

Optimization
* Rule:
> No optimization flags means no optimization

» Suggestions:
> Use at least -0

> Try -fast

* Notes:
> Compile and link with the same flags

2/21/09 17

Debug information

- Always generate debug information
> =g for C/Fortran

> —g0 for C++
» Also useful for profiling
* No/minimal performance impact

2/21/09 18

Exploring -fast

- —fast is a macro-flag:
> Enables a number of potentially useful optimisations
> May not be suitable for all situations

* Assumes build machine = run machine
> Use -xtarget= to specify otherwise

» Enables floating point simplification
> Use -£simple=0 -£fns=no otherwise

» Assumes basic pointer types do not alias
> Use -xalias level=any otherwise

» Flags are parsed from left to right
> Qverride by placing flags on right

2/21/09 19

Target hardware

» Not all processors implement the same instructions

> Application will not run if instructions are not
implemented

» If build machine is machine that will run binary:
> —xtarget=native
» For binaries that will run on a wide range of

machines:

> SPARC: -xtarget=generic
-xarch=sparcvis2

> x80. -xtarget=generic -xarch=sse2

2/21/09 20

Instruction set extensions (SSE/x86)

* |nstruction set extensions on x86

- Single Instruction Multiple Data (SIMD)
> e.g. two parallel add operations in a single instruction

* Enable generation with:

> —-xtarget=generic -xarch=sseZ2
-xvector=simd

2/21/09 21

Target hardware 32-bit or 64-bit

» 32-bit (-m32) can address 4GB of memory
* 64-bit (-m64) can address >>4GB of memory

* 64-bit: pointers and longs are 8 bytes
> => |arger memory footprint
> => slower

* x86 64-bit has

> More registers, Better ABI
> => faster

> For x86 64-bit faster except when dominated by
increased memory footprint

2/21/09 22

Inlining and cross-file optimisation

* Inlining:
> Avoids call overhead
> Provides more opportunities to code optimisation
> Increases code size

» Within file inlining at -x04
» Crossfile inlining at -xipo
> Inlines between source files

> Reduces impact of source code structuring
> Can increase compile time

2/21/09 23

Profile feedback

* Profile feedback enables the compiler
> To see the runtime behavior of the application
> To make better code layout decision
> To make the right inlining decisions

* Three step process:

> Compile with
-xprofile=collect:/dir/profile

> Run with training workload
> Compile with -xprofile=use:/dir/profile

» Very useful for applications containing lots of
decision logic

2/21/09 24

2/21/09

Application Performance
Compiling for performance
Profiling for performance
Closing remarks

25

Good practices

» Always profile your application
> |s the time being spent in the important code?
> Are there obvious hot-spots to improve?
> How does the profile change with the workload?

» Amdahl's law
> Limit on performance gain is the time spent in the slow code

* Fix performance issues

> But make the fixes at the highest possible level of
abstraction

2/21/09 26

Why use Sun Studio Tools? (l)

» The work for production code, production runs
> Runs from tens of seconds through hours

* They measure real behavior
> Fully optimized and parallelized applications
> Java HotSpot enabled

» They have minimal dilation and distortion
> ~5% for typical apps, ~10% for Java apps

» Supports code compile with Sun Studio & GNU
compilers

* They're FREE for Solaris & Linux

2/21/09 27

Why use Sun Studio Tools? (ll)

» They make things as simple as possible
> Show data in the user's source model
> Including OpenMP, MPI, Java, threads, etc.

* ..., but no simpler

> Show exactly what the compiler did
> Inlines, outlines, clones, parallel routines

> Show what JVM did

> |nterpreted methods, HotSpot-compiled methods
> GC & HotSpot-compiler activities

2/21/09 28

Questions

» What can | change to improve perforance?
» Which resources are being used?
* Where are they being used?

» Single-threaded
> |s the CPU being used efficiently?
> Memory subsystem delays? (TLBs, caches)
> |/O subsystem problems? (disk, network, paging)

* Multi-threaded

> Similar to single-threaded &

> Load unbalanced? Lock contention? memory/cache
contention?

2/21/09 29

Gathering profiles

- Use —g/-g0 for attribution of time to source line
> Gather profile with:

> collect <app> <params>
> collect -P <pid>

* Analyse profile with:
> analyzer test.<N>.er

> er_print test.<N>.er

2/21/09 30

Application profile

..j

Sun Studio Analyzer [test.2

File Yiew Timeline Help

caEEI0E A BB @

er]

l/ Functions | Callers-Callees Source | Disassembly | Timeline | ExXperiments

B User | /& User | Mame

CPU CPL
T (5eC.) (SeC.)

11.838 11.838 «Total=

11.818 | 11.838 main

0.020 0.0Z0 brk unlocked
0. 0.020 malloc

0. 0.02Z0 malloc unlocked
a. 0.020 _morecore

0. 0.020 sbrk

a. 0.020 sbrk unlocked
0. 11.338 atart

Sun

microsystems

Caller-Callee

Performance Analyzer [test.l.erl
File Yiew Timeline Help

Nala=v(ela v s (e =] & [a]e B @@ Find | Text ~]

”Fum:tiuns Callers-Callees |/Suurt:e |/Lines rDisassemhly rPCs rTimEIine rLeakList rStatisti[:s rExperiments |

12 User | @ User | £ User | Mame
CPU CPL CPL
T (sen.) (sec.) (sec.)

330237 5.574 4,299 Quiesce
15.1581 138.347 3Search

EvaluatePauns
EwvaluatePassedPaums

Firstlne

Swap

Lastlne
EwvaluatePassedPammPRaces

EwvaluateDraws

v -
Fhal

File Yiew Timeline Help

aEEUEEBEE @ %=

|/ Functions Callers-Callees

Source | Disassembly | Timeline | ExXperiments

B User | 5 User | Source File: ./ml.c
R R Obhject File: ./ml
(SeC.) (sec) Load Object: <mlk-

0. 0. 21, |

22,
23.
24,
25,
141 26,
230 a7,
430 24.
411 29,
30.
3l.
0. a. 32
33.)

141
. 430
.40
411

o = O O [
o = O O [

20. int inset(double ix, double iv)

sFunction: inset=

int iterations=0;

double x=ix, v=1ivy, =x2=x%x, ¥I=y¥y:
while [(x2+vy2<4d) &£& [(iterations<10007)
{

i 2 F X F oy o4 oiv:

x 2 - w2 + ix:

M2 o= d W o
¥E =¥ * ¥
iterations+:

}

returh iterations:

[4]

W e

» SUN

microsystems

@ Sun

microsystems

Performance Analyzer - Timeline

r

—-| Performonce Analyzer [test.l.er]

Eile _ﬂew Iimeline ﬂelp

[sl=l=]v[Ells]E[=] [m]x]=] (5 [«ar]a]s][E]]s) i) [EHFED

|

sec. 2 4 B 8 M0 12 14 M6 18 20 22 24 26 25 30 32 34 36 38 40 42 44 & Data for Current Timeline Selection
o T PSP PYPE P Y P PP PP PP P Y YUY PYPY PP R 8 Y PSP PP P Y PRSP 1P PP PR T PR 1R PYP (R Y 10 PR P PO PP P Y PR P 1P PO
Ex 1 all Experiment Name: AB3,FZ_J5,7142,B32,5AVE/test. 1. ex

Event Typ_e: HJ Counter Data (dom)

1'1(3 Leaf Function: cfunc{int)
Timestamp (Sec.): [41. 933414
B Lwe: 1
Tz Thread: (1
CPU: |1

Interval: (10008
Clock Freq (MHz): (2191

=

Call Stack for Selected Event
cfunciint) + 0x00000012, line 80 in "cloop.cc™
. Java_jsynprog_JavaCC + 0xX0000006E, line 73 in "cloop.cc™

z
]
E
3
]
E
a4 L = ' Interpreter + 0x00006F55
LGN | i : Interpreter + 0x000004 34
- - - : call_stub + 00000002C
ﬁ : JavaC alls:: call_helper{JavaVfalue *,methodHandle *, JavaC alli
e 1 : 08::08_exception_wrapper{void(){Javalalue*,methodHandle
’ @ 3 Javac alls::call{JavaValue*,methodHandle,JavaCallArgument
. ini_imvoke_staticJNIEmn_*JavaValue®,_johject*, JNICallType
& jni_CallStaticVoidMethod + 0x00000112
[l main + 0x00000FFE
1
16 -
]
B
1
1-"6 B & ¢ & 5§ 8§ & = & 8 B i
1] [] [] [] [] [] [] [| [] [] | I | []
| ' | | | ' 1
H [] [] [] [] []
1E | : !
Cll————————
o =]
=] I 1 Il]] - I |
- i i - - - 8 - |
11— — e
[«]

22109 L = . 34

DEMO

2/21/09 35

2/21/09

Application Performance
Compiling for performance
Profiling for performance
Closing remarks

36

The checklist

» Build with optimization
> Atleast -0

» Build with debug enabled
> =g (-gO0 for C++)

* Profile
> collect <app> <params>

2/21/09 37

Optimization: Increasing optimisation

» Increased optimization (-fast)

> Typically improved performance
> Be aware of the optimisations enabled

» Use crossfile optimization (-xipo)
> Typically good for all codes

2/21/09 38

Optimization: Increasing
information
» Profile feedback to give more information

> —xprofile=[collect: |use:]

> Good for all codes

> Particularly helpful for inlining and branches

2/21/09 39

Optimization: Leveraging libraries
» If time is spent in library code:

> Supplied optimized maths functions
-xlibmil -xlibmopt

> Optimized STL for C++
-library=stlport4

> The performance library
-library=sunperf

2/21/09 40

Summary

> Always profile
» Always use optimization

2/21/09 41

2/21/09

Gains from Tuning Categories

Tuning Category

Typical Range of Gain

Source Change 25-100%
Compiler Flags 5-20%
Use of libraries 25-200%
Assembly coding / tweaking 5-20%
Manual prefetching 5-30%
TLB thrashing/cache 20-100%
Using vis/inlines/micro-vectorization 100-200%

42

2/21/09

‘000 Sun Studio C, C++ and Fortran Compilers and Tools

G ~(Q- Google iy

[0 Apple Yahoo! Google Maps YouTube Wikipedia MNews (221)v Popularv

Sun+ Javawv Solaris v Communities My SDN Account+ Join SDN + ™

Sun Developer Network (SDN)

APls Downloads Products Support Tralning Particlpate

Developars Home > Sun Studio

Sun Studio
C, C++ & Fortran Compilers and Tools

~ PERFORMANCE MATTERS
Download record-setting compilers
and tools for FREE or Sun Studio

» Order a Free Media Kit Now o
on Twitter ‘-

" on Facebook

‘ » Site Index |

(0710 0T Features Documentation Community Support Downloads

At a Glance | What's New | Topics | Videos | Heroes | Partners

Search o

Sun Studio software delivers a high-performance, optimizing C, C++, and Fortran Alat

developer toolchain for Solaris, OpenSolaris, and Linux operating systems, including u
support for multicore x86- and SPARC-based systems. The toolchain includes
parallelizing compilers, code-level and memory debuggers, performance and thread
analysis tools, OpenMP support as well as optimized math libraries. With a next-
generation NetBeans-based IDE, development of multicore applications has never been

easier. Get started with Sun Studio 12 or Sun Studio Express 11/08. ool Toots work logafher

support the stages of
porting, bullding, tuning,
and debugging an
application on SPARC
systems.

» Download Now

Sun Studio Express 11/08

» Download JEECUL C AEll » Download (contains the latest features and enhancements)

What's New [Spotlight

Sun Studio Software Registration
Sweepstakes Register your Sun Studio Express
07108 or Sun Studio Express 11/08 product for a
Maximizing Application chance to win Bose QuietComfort headphones, a

kb Wii game system, or a Guitar Hero World Tour
To increase performance Band Kit

and assure scalability in

February 20, 2009
Sun Studio Webinar:

your applications you need
compilers that optimize your code and profiling
tools that identify bottlenecks, hot spots, and
memory access issues. Learn how the Sun
Studio Thread Analyzer, Performance Analyzer,
and D-Light can help you tune your application

Fe el e e e efe e o e

Podcasts and Videos

Sun Studio Express 11/08
Join lkroop Dhillon, Sun
Studio Product Marketing
Manager, and Vijay Tatkar,

Sun

microsystems

43

mailto:koberoi@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

