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Agenda

• Application Performance

• Compiling for performance

• Profiling for performance

• Closing remarks
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Sun Studio software
C/C++/Fortran tooling for the multi-core era

• Adoption increased 
100+% over 2 years. 
Large footprint in 
enterprise/technical 
accts & growth in 
open src usage

• #1 IDE in the Evans 
survey for 
Performance of 
Resulting 
Applications 
category

• Intel, AMD, Sun & 
Fujitsu 
Partnerships

z

• Parallelism – feature-rich toolchain 
(auto-parallelizing compilers, thread 
analysis / debugging / profiling, 
OpenMP support, ...) & MPI support via 
Sun HPC ClusterTools

• Performance – dozens of industry 
benchmark records in the past year 
over Intel, AMD, Sun, & Fujitsu 
architectures

• Productivity – NetBeans-based IDE, 
code & memory debuggers, application 
profiler

• Platforms – Simplified dev across 
architectures & OSs (Solaris OS, 
OpenSolaris OS, Linux)
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Sun Studio Software Overview
Integrated Toolchain

• Record-setting parallelizing C/C++/Fortran 
Compilers with autopar

• NetBeans-based IDE

• Stable, Scriptable, Multilingual Debugger (dbx)

• Memory Debugger- leak, access, usage (RTC)

• Application Profiling Tools (Performance 
Analyzer)

• Multi-core Optimizations, Multithreaded High 
Performance Libraries

• OpenMP API Support

• Multithreading Tools- Thread Analysis

http://developers.sun.com/sunstudio

FREE
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Why Care about Performance?

• Because your company cares
> Faster code => greater productivity => lower cost

• Because your peers and customers care
> Better performance => less HW => lower cost

• Because it's interesting and suprising
> Coding is based on assumptions about behavior
> Performance problems arise from disconnects

• Because it's easy to do
> Simple runs, automated runs
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What's a Performance Problem?

• Subjective criteria:
> It takes too long to finish
> It responds too slowly

• Objective critera:
> It can't handle the required load
> It consumes too many resources to do its work

• Is it worth fixing?
> Cost of fixing vs. aggregate cost of problem

• Most untuned codes have low-hanging fruit!
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Where does performance come from?

• Not the real question...
> Every application has a maximum theoretical 

performance
> Design decisions and implementation can deliver lower 

actual performance

• Alternative: Where has performance been lost?
> Need to identify where the time is spent
> Then determine what can be done about it
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Where performance goes to
• Performance opportunities:

> Algorithms
> Structure
> Compiler flags
> Hand-tuned code

Development stage

Algorithms
Structure

Impact

Compiler flags

Hand-tuned
code
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Algorithmic complexity
• How many operations?
• Classic example:

> Bubble sort O(n2)
> Quick sort O(nlog(n))

• Sun Studio libraries have 
optimized code
> perflib (BLAS, FFTs, etc)
> medialib (images, codecs)
> Optimized maths libraries
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Compiler flags
• The compiler's job:

> Produce the best code
> Given little knowledge of developer's intent
> Best code regardless of coding style

• Increasing optimization
> Leads to improved performance
> Relies on standard conforming source code

• Does a better job with
> Visibility of more of the code
> More information about the intent of the developer
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Hand-tuned code
• Examples:

> Special case code for the common situation
> Assembly language versions of key routines

• Cons:
> Time consuming
> Inflexible (e.g. workload specific)
> Platform specific

• Good examples:
> Use of language standards to provide compiler with more 

information (e.g. restrict keyword)
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Perspective on optimization
• Algorithms, structures, and compiler flags

> High-level change
> Useful for all platforms
> Improve the application for all workloads

• Tweaks, hand-code
> Low-level (localised) change
> Platform specific
> Often already done by the compiler

• So:
> Focus on the high-level
> Unless the low-level gains are clear
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Methodology / Tools Used

Ensure Best Builds:
Latest Compiler
Optimization flags
Profile feedback
Insert #pragmas

Identify Hot Spots:
gprof( function timings)
tcov( line counts)
analyzer (many stats)

Check Libraries Used:
optimized math libs
libsunperf
medialib
Write special routines?

Get Execution Stats:
cputrack(perf counters)
locstat(lock containment)
trapstat(traps)

Study and rewrite Source as appropriate

Study and rewrite assembly as appropriate
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• Profiling for performance
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Choosing compiler flags
• Use the flags

> That you understand
> That you need (i.e. make a difference)

• Don't use flags
> That you don't understand
> That don't have an impact
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Optimization
• Rule:

> No optimization flags means no optimization

• Suggestions:
> Use at least -O
> Try -fast

• Notes:
> Compile and link with the same flags
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Debug information
• Always generate debug information

> -g for C/Fortran
> -g0 for C++

• Also useful for profiling
• No/minimal performance impact
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Exploring -fast
• -fast is a macro-flag:

> Enables a number of potentially useful optimisations
> May not be suitable for all situations

• Assumes build machine = run machine
> Use -xtarget= to specify otherwise

• Enables floating point simplification
> Use -fsimple=0 -fns=no otherwise

• Assumes basic pointer types do not alias
> Use -xalias_level=any otherwise

• Flags are parsed from left to right
> Override by placing flags on right
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Target hardware
• Not all processors implement the same instructions

> Application will not run if instructions are not 
implemented

• If build machine is machine that will run binary:
> -xtarget=native

• For binaries that will run on a wide range of 
machines:
> SPARC: -xtarget=generic 
-xarch=sparcvis2

> x86: -xtarget=generic -xarch=sse2
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Instruction set extensions (SSE/x86)

• Instruction set extensions on x86
• Single Instruction Multiple Data (SIMD)

> e.g. two parallel add operations in a single instruction

• Enable generation with:
> -xtarget=generic -xarch=sse2 
-xvector=simd
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Target hardware 32-bit or 64-bit

• 32-bit (-m32) can address 4GB of memory

• 64-bit (-m64) can address >>4GB of memory
• 64-bit: pointers and longs are 8 bytes

> => larger memory footprint
> => slower

• x86 64-bit has
> More registers, Better ABI
> => faster
> For x86 64-bit faster except when dominated by 

increased memory footprint
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Inlining and cross-file optimisation
• Inlining:

> Avoids call overhead
> Provides more opportunities to code optimisation
> Increases code size

• Within file inlining at -xO4

• Crossfile inlining at -xipo
> Inlines between source files
> Reduces impact of source code structuring
> Can increase compile time
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Profile feedback
• Profile feedback enables the compiler

> To see the runtime behavior of the application
> To make better code layout decision
> To make the right inlining decisions

• Three step process:
> Compile with 
-xprofile=collect:/dir/profile

> Run with training workload
> Compile with -xprofile=use:/dir/profile

• Very useful for applications containing lots of 
decision logic
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Good practices

• Always profile your application
> Is the time being spent in the important code?
> Are there obvious hot-spots to improve?
> How does the profile change with the workload?

• Amdahl's law
> Limit on performance gain is the time spent in the slow code

• Fix performance issues
> But make the fixes at the highest possible level of 

abstraction
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Why use Sun Studio Tools? (I)

• The work for production code, production runs
> Runs from tens of seconds through hours

• They measure real behavior
> Fully optimized and parallelized applications
> Java HotSpot enabled

• They have minimal dilation and distortion
> ~5% for typical apps, ~10% for Java apps

• Supports code compile with Sun Studio & GNU 
compilers

• They're FREE for Solaris & Linux
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Why use Sun Studio Tools? (II)

• They make things as simple as possible
> Show data in the user's source model
> Including OpenMP, MPI, Java, threads, etc.

• ..., but no simpler
> Show exactly what the compiler did

> Inlines, outlines, clones, parallel routines
> Show what JVM did

> Interpreted methods, HotSpot-compiled methods
> GC & HotSpot-compiler activities
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Questions

• What can I change to improve perforance?
• Which resources are being used?
• Where are they being used? 
• Single-threaded

> Is the CPU being used efficiently?
> Memory subsystem delays? (TLBs, caches)
> I/O subsystem problems? (disk, network, paging)

• Multi-threaded 
> Similar to single-threaded &
> Load unbalanced? Lock contention? memory/cache 

contention?
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Gathering profiles
• Use -g/-g0 for attribution of time to source line
• Gather profile with:

> collect <app> <params>
> collect -P <pid>

• Analyse profile with:
> analyzer test.<N>.er
> er_print test.<N>.er



Application profile



Caller-Callee



Source level profile
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Performance Analyzer - Timeline
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DEMO
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The checklist
• Build with optimization

> At least -O

• Build with debug enabled
> -g (-g0 for C++)

• Profile
> collect <app> <params>
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Optimization: Increasing optimisation
• Increased optimization (-fast)

> Typically improved performance
> Be aware of the optimisations enabled

• Use crossfile optimization (-xipo)
> Typically good for all codes
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Optimization: Increasing 
information
• Profile feedback to give more information

> -xprofile=[collect:|use:]
> Good for all codes
> Particularly helpful for inlining and branches
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Optimization: Leveraging libraries
• If time is spent in library code:

> Supplied optimized maths functions 
-xlibmil -xlibmopt

> Optimized STL for C++ 
-library=stlport4

> The performance library 
-library=sunperf
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Summary
• Always profile
• Always use optimization
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Gains from Tuning Categories

Tuning Category Typical Range of Gain

Source Change 25-100%

Compiler Flags 5-20%

Use of libraries 25-200%

Assembly coding / tweaking 5-20%

Manual prefetching 5-30%

TLB thrashing/cache 20-100%

Using vis/inlines/micro-vectorization 100-200%
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Metrics for Success: 
Performance Analysis 101

Thanks!!

Kuldip Oberoi
koberoi@sun.com
http://koberoi.com

mailto:koberoi@sun.com
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