GTask

Developing asynchronous
applications for multi-core
efficiency

February 2009
SCALE 7x

Los Angeles Christian Hergert

What Is It?

GTask is a “mini-framework” to
help you write asynchronous
code.

Dependencies

GLib and GObject

Platforms

Linux, BSD, and OpenSolaris have been tested
x86, x86_64, and ARM

Probably others

The Application Stack

asooas

Configuration Multi-Core
oo
User Interface Multimedia

Portability and Object Orientation

. GLb/GObect

#include <glib.h>

Useful routines for C
Portable fundamental types (gint, gfloat, gint64, ...)
Portable atomic operations (g_atomic_int_inc, ...)

HashTable, Queue, Lists, Trees

_ocks and Conditions
Errors (like exceptions)

UTF-8, various encodings, and conversions

etc ...

#include <glib-object.h>

Object oriented programming for C
Dynamic type system

Objects, Interfaces, Polymorphism
Properties

Signals (aka, “events”)

Closures

Automatic API bindings to compiled and interpreted
languages (Java, Python, Ruby, JS, C++, C#, and more)

Memory management with reference counting

GTask

#include <gtask/gtask.h>

Abstracts closures one more level
Single shot execution (only executed once)
Ability to respond to execution results/errors

Using callback chains, you can emulate features like
try/catch/finally

Cancellation of tasks
Task dependencies to prevent premature execution

Custom schedulers for the problem domain

| Think I've Seen This Before?

Python Twisted

Microsoft's CCR

Apple's NSOperation (OS X 10.5)
Intel's Threading Building Blocks

GTask is probably best described as a blend of Python
Twisted and NSOperation

Unlike twisted, you do not need radical changes to your
application

Also,

Removes concept of the Stack

The Basics

1. Create a task

g_task _new (...);
2. Add a callback

g_task add_callback (...);

3. Schedule the task
g_task scheduler_schedule (...);

Task Phases

WAITING — Waiting on dependent tasks

READY — Ready for execution by scheduler

EXECUTING — Currently executing by scheduler
CALLBACKS — Handling post execution callbacks/errbacks
FINISHED — Execution and callbacks have completed

CANCELED - Task was canceled during execution

Callbacks and Errbacks

Callback Task Handler 1

T~

Callback Task Handler 2

T~

Callback Task Handler 3

Function Prototypes

/* Task Execution Method */
GTask* (*GTaskFunc) (GTask *task,
GValue *result,
gpointer data);

/* Callback (After Successful Execution) */
GTask* (*GTaskCallback) (GTask *task,
GValue *result,
gpointer data);

/* Errback (After Errored Execution or Callback) */
GTask* (*GTaskErrback) (GTask *task,
GError *error,
GValue *result,
gpointer data);

Our First Task

<gtask/gtask.h>
SCHEDULER (g task scheduler get default ())

do something ()

{
GTask *task;

task = g task new (lsdir cb, ,) ;
g task scheduler schedule (SCHEDULER, task);

g object unref (task);

<gtask/gtask.h>
SCHEDULER (g task scheduler get default ())

do something ()

{
GTask *task;

task = g task new (lsdir cb,)) ;
g task scheduler schedule (SCHEDULER, task);

g object unref (task);

<gtask/gtask.h>
SCHEDULER (g task scheduler get default ())

do something ()

{
GTask *task;

task = g task new (lsdir cb, ,) ;
g task scheduler schedule (SCHEDULER, task);

g object unref (task);

<gtask/gtask.h>
SCHEDULER (g task scheduler get default ())

do something ()

{
GTask *task;

task = g task new (lsdir cb,)) ;
g task scheduler schedule (SCHEDULER, task);

g object unref (task);

lsdir cb (GTask *task,
GValue *result,
gpolnter user data)

{
gchar *path = user data;
gchar *name;
GDir *dir;
dir = g dir open (path, 0O,) ;
((name = g dir read name (dir) !=
g print (, hame);

Remember the Result Parameter?

Each prototype has access to current “result”.

Great for passing state between
Callbacks and Errbacks.

Feels like “functional” programming.

“Throwing” an Error

GError *error = g error new literal (
SOME ERROR DOMAIN,
SOME ERROR CODE,

));

/* steal our reference to the error */
g task take error (task, error);

/* 0r, 1nstead copy the error */
g task set error (task, error);
g error free (error);

“Catching” an Error

resolve error (GTask *task,
GError *error,
GValue *result,
gpointer user data)
{

/* unsetting error allows further callbacks */
g task set error (task,) ;

}

g task add errback (task, resolve error,)

Try/Catch/Finally

We can emulate try/catch/finally using Callbacks
and Errbacks!

/* the catch */
g_task add_errback (task, task errorback1, NULL);

/* the finally */
g_task add_both (task, task callback2, task errback2, NULL);

Scheduling

Provides default scheduler, accessible as
g_task scheduler get default()

Default scheduler is very simple
Thread pool growth size defaults to 10 * N_CPU

If implementing a scheduler, watch out for the
bumper-to-bumper effect!

Scheduling (Continued)

Currently working on a Work Stealing Scheduler

Also a tertiary scheduler providing “tagged” tasks
to pin to a given cpu (increase cpu cache hits).

Work Stealing Scheduler

Each thread has a local (double sided) queue of work items.
If no more work, I'll see if my neighbor thread has work left.
“Local” pop of work item occurs from tail.

“Steal” pop of work item occurs from head.

Local pops attempt lockless for fast-path, uses lock if failed.
Steal requires lock.

... Waiting on scheduler revamp.

Scheduler Revamp

Currently threads are managed by the scheduler.

No real reason for that, its lots of tedious code added to
writing custom schedulers.

Often times causes lots of extra threads.
Pull thread management out into global controller.

Schedulers are given threads as needed, based on their
MIN, MAX, and DESIRED thread count.

Achieving Higher Concurrency

Use Asynchronous tasks when necessary (and
possible).

Try to avoid shared state. This isn't just related to
gtask, but in general. The result field is a great
place to store what state you need.

Async Tasks

g_task _set _async (task, TRUE);
Tasks that do not finish during g_task_execute().
Best way to achieve higher concurrency.

Good example would be using Async IO from within a
task. (GIO, part of Glib)

Task is responsible for moving task to the callbacks
phase.

g_task set state (task, G_TASK CALLBACKS)

Main Dispatch

User interfaces such as gtk+ are not thread safe.

Callbacks and Errbacks are performed from
within the default main loop.

Requires the use of a Main Loop such as
GMainLoop or gtk_main().

This allows you to perform work as tasks, and
update the user interface seamlessly within a
callback or errback.

Enabling Main Dispatch

g object set (g task scheduler get default (),
, TRUE,
)

Language Bindings

Python and Vala currently supported

NET (via Mono) soon

JavaScript soon (requires gobject-introspection)
C++ soon, needs someone familiar with gtkmm

Python
Simple wrapper around the GTask library

gtask, urllib

URL =
task = gtask.Task(: urllib.urlopen(URL).read())
task.add callback(data: (,) .write(data))

gtask.schedule(task)

Python (continued)

Start by rapidly prototyping your code in Python
using Tasks.

Optimize as needed simply by implementing your
Task in C and calling from Python.

Vala

Vala provides a modern language on top of GLib
and GObijecit.

Syntax very similar to C#.
Compiles to C, no runtime required.

Generics, Lambdas, Properties, Signals, all
supported.

You can write implicitly asynchronous code.

Implicitly Asynchronous

do something ()

task = new Task (=> {
some_sync _operation ();
1)

/* execution suspends at task.run(). *
* result is filled upon completion */
result = task.run ();
.printf (,
| Jresult);

The Future

Parallel Constructs (foreach, sort, ...)

Local map/reduce
Work Stealing and Rate-Limiting Schedulers

Auto marshaling of task results (for intra-
language task execution)

Integrated Profiling
Debugging helpers for visualizing “virtual stack”

The Future (continued)
Concurrency Helpers
g_task n_of(...)
g_task all of(...)
g_task any off(...)

Helps solve the problem of needing to finish a
set of tasks before processing can continue.

hink about multiple database queries in parallel.

GTask website:

GTask documentation:
GTask API Reference:

F

1N

http://chergert.github.com/gtask
http://docs.dronelabs.com/gtask
http://docs.dronelabs.com/gtask/api

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

