
Introduction to Realtime Linux

Bryan Che



What is Realtime Performance?

 Realtime is not about faster performance

 Realtime is not about higher throughput

 Realtime may even be slower than non-realtime!

So, then what is realtime performance, 
and why would anyone want it?



Realtime is About Deterministic 
Performance

●Non-Realtime
● Average times highly variable
● No prioritization of traffic
● Favors throughput

●Realtime
● Highly deterministic time
● Prioritization of traffic
● Sacrifices throughput for low, 

deterministic latency



Why Realtime Linux?

 Enables applications and transactions to run predictably, with 
guaranteed response times

● Provides microsecond accuracy

 Provides competitive advantage & meets Service Level 
Agreements

● Multimedia: precise timing and synchronization

● Travel web site: missed booking

● Program trading: missed trades

● Command & Control: life & death

 Industries particularly interested in Realtime Linux include 
Government, Defense, Financial Services, Telecommunications, 
Manufacturing, etc.

●



What Does Realtime Linux Provide?



What is Realtime Linux?

 Patchset developed at kernel.org community which adds to the 
standard Linux kernel:

● Full preemption

● Threaded IRQs

 Breaks down long-running, un-preemptable code paths to 
provide responsive behavior

 Large patchset:

● Diffstat of patch set 2.6.26.6-rt11 shows:

●  664 files changed, 37806 insertions(+), 4217 deletions(-)

 Key Developers

● Ingo Molnar (Maintainer, Red Hat), Thomas Gleixner (Red Hat contractor), 
Steven Rostedt (Red Hat), Paul McKenney (IBM), John Stultz (IBM), Gregory 
Haskins (Novell), Peter Zijlstra (Red Hat), etc



Key Changes in the Realtime Kernel

 Preemption

● Most locks converted to rt_mutex

● priority inheritance for mutexes

● threaded interrupt handlers (both hard and soft)

● Spinlocks can sleep

● Interrupts not turned off for almost all operations

 high-resolution timers

 Completely Fair Scheduler (CFS) *

 Read-Copy-Update (RCU) *

 Ftrace tracing logic

*Now in Upstream Kernel



Key Changes in the C Library for Realtime

 pthread_mutex_t has kernel support for PRIO_INHERIT

● Priority Inheritance is a mechanism used to avoid the deadlock condition known 
as Priority Inversion

● The realtime kernels implement priority inheritance (PI) in futexes (fast user-
space mutexes) used by pthreads

 Fast user-space mutexes (futexes) used for pthread mutexes

 POSIX interfaces to scheduler APIs

● sched_*

 Timer interfaces

 Note that you don't have to have a realtime kernel for most of 
these APIs to work



Reducing Scheduling Latency

Vanilla
• Min:    1

• Max:    2857

• Mean:   11.47

• Mode:   9.00

• Median: 9.00

• Std. Deviation: 54.94

MRG RT
• Min:    4

• Max:    43

• Mean:   8.34

• Mode:   8.00

• Median: 8.00

• Std. Deviation: 1.49



Realtime Throughput



Realtime Performance Tools

 FTrace

● Runtime trace capture of longest latency codepaths – both kernel and 
application.  Peak detector

● Selectable triggers for threshold tracing

● Detailed kernel profiles based on latency triggers

 TUNA

● Dynamically control tuning parameters like process affinity, parent & threads, 
scheduling policy, device IRQ priorities, etc.

 Standard Linux performance tools

● Gdb, OProfile Frysk – source level debuggers & profiler

● SystemTap, kprobe – kernel event tracing and dynamic data collection

● kexec/kdump standard kernel dump/save core capabilities



Realtime Java With Realtime Linux

 Standard Java deployments 
typically have highly 
undeterministic performance
—especially because of 
garbage collection

 JSR 1 provides a realtime 
specification for Java and 
realtime JVMs

● Requires an underlying realtime 
operating system to provide 
priority inheritance and preemption
—like realtime Linux!

● Provides deterministic garbage 
collection, realtime threads, and 
deterministic performance

Red Hat and IBM have partnered to deliver
Realtime Java on Realtime Linux
for the US Navy DDG 1000 Zumwalt 
Class Destroyer Program



How to Develop for Realtime Linux

 Use POSIX threads

● finer grained applications mean more parallelism, so can take advantage of 
multiple cores

 Use POSIX threads synchronization mechanisms

● Mutexes

● Barriers

● Condition variables

 Set appropriate priorities for your threads

● Any SCHED_FIFO thread is higher priority than any SCHED_OTHER thread

● ensure that your high priority threads don't hog the processor



How to Deploy Realtime Linux

 Tune your system!

● No two applications behave the 
same

● use tuna to tweak priorities and 
affinities

● use oprofile to find application 
hotspots

● use ftrace to find long latency 
areas

 Dedicate processors to your 
application threads

● Use tuna or taskset to bind 
threads to specific processors and 
move other threads off

● 4-way and 8-way processors 
getting cheaper

 Use cpu affinity field 
in /proc/irqs/<n>/smp_affinity 
to bind interrupts to specific 
processors

● tuna can do this easily



Use TUNA for Tuning



Hardware Matters

 Hardware can have a big effect 
on realtime performance

 Hardware drivers may need to be 
updated to handle threaded 
interrupts

 Many system BIOS's include 
Service Management Interrupts 
(SMIs)

● Cause non-deterministic latency 
beneath the operation system by taking 
CPU cycles for things like power 
management, administration

● SMI latencies cannot be resolved by 
realtime linux—they require the 
hardware OEM to remove SMIs or 
make them configurable

●



History of Realtime Linux

 First steps  (2000-2004)

● Ingo Molnar / Andrew Morton – 
low latency patch

● Robert Love – preemption patch

 Current State (2004 - today)

● First started on 2.6.9 kernel – Ingo 
Molnar's realtime patch

● Originally called realtime-preempt 
patch

 Moving From -rt to mainline:

● BKL preemptable (2.6.8)

● Mutex patch (2.6.16)

● Semaphore-to-Mutex conversion 
(ongoing ~85% done)

● Hrtimers subsystem (2.6.16)

● Robust futexes (2.6.17)



● Priority inheritance futexes (PI-
futex) (2.6.18)

● Generic IRQ layer (2.6.18)

● Core time re-write (2.6.18)

● Sleepable RCU (2.6.19)

● Latency Tracer (circa 2.6.18)

● High-res+dynticks (2.6.21)

● CFS – completely fair scheduler 
(2.6.23)

● Conversion of spin-locks to mutex 
(2.6.23+)

● All Interrupt handling in threads 
(~2.6.23+)

● Full rt-preempt (~2.6.24+)



Realtime Linux Roadmap

 Incorporate the realtime patchset into the mainline kernel

● Current realtime kernel is 2.6.26-based

● Convert from patchset to GIT tree for 2.6.28

● Merge threaded IRQs

● Threaded device handler, allows driver to register as threaded interrupt 
handler

● Target for 2.6.30

● Merge preemption

● Re-work 'macro magic' that implements preemption into lock_t abstraction

● Depends heavily on acceptance of threaded interrupts

● Target perhaps for 2.6.31/2.6.32

 Improve performance

● Reduce determistic latency vs throughput tradeoff

● Improve performance of surrounding IO systems



Red Hat Enterprise MRG Provides 
Realtime Linux
 Red Hat Enterprise MRG 

(Messaging, Realtime, Grid) 
includes a Realtime kernel 
and performance tools

 Installs onto standard Red 
Hat Enterprise Linux 5 and 
preserves Red Hat Enterprise 
Linux application 
certifications

● No application or code changes 
necessary

● Take advantage of Red Hat 
ecosystem

 Aggressively tracks 
upstream kernel 
development for 
performance

 Red Hat has worked with 
OEMs to certify realtime 
hardware

● Including addressing SMIs

 Red Hat has partnered with 
IBM and Sun to certify their 
realtime JVMs for MRG 
Realtime



Red Hat Enterprise MRG Demo



Additional Information

 RT Wiki: http://rt.wiki.kernel.org/index.php/Main_Page

 Red Hat Enterprise MRG: http://redhat.com/mrg

 Realtime Tuning Guide: 
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.1/html/Realtime_Tuning_Guide/

http://rt.wiki.kernel.org/index.php/Main_Page
http://redhat.com/mrg
http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/1.1/html/Realtime_Tuning_Guide/

