
© 2007 IBM Corporation

IBM Linux Technology Center February 10th 2007

Practical Performance Analysis in Linux

IBM Linux Technology Center
Vara Prasad
prasadav@us.ibm.com

IBM Linux Technology Center

© 2007 IBM Corporation2

Agenda

 Common Performance Questions
 What is SystemTap?
 What can SystemTap do for you?
 SystemTap GUI
 Real Life Examples
 Conclusions
 Q&A

IBM Linux Technology Center

© 2007 IBM Corporation3

Common performance questions

 Occasionally jobs take significantly longer than usual to
complete, or don’t complete. Why?

 An application seems to always take a long time to
complete. Where is the problem?

 Is my system capable of handling additional workloads?

 Answering these questions is often disruptive, time-
consuming, and requires a high degree of OS knowledge
and expertise.

IBM Linux Technology Center

© 2007 IBM Corporation4

Current performance tools: Drawbacks

Tuning high performance systems is
complex

System wide performance problems
are difficult to identify
 many complex moving parts
 Standard tools are limited in

capabilities
 Expert tools require customization not

feasible for production systems
Some tools have overhead even

when not in use, not ideal for
production systems

Some tools need modifying operating
system

Often, different tools are used on
different hardware
 Many different tools and data sources

but no easy way to integrate the
information

IBM Linux Technology Center

© 2007 IBM Corporation5

Characteristics of the ideal tool
 Available: Integrated into the OS and available on demand
 Low overhead: Has zero impact when disabled;

insignificant overhead when in use
 Safe: Safe to use in a production environment
 Top to bottom: A tool that helps to solve problems from

application layer to the hardware interface
 Versatile: Easy to learn and use effectively by both novices

and experts

IBM Linux Technology Center

© 2007 IBM Corporation6

SystemTap

 One tool to analyze systemic problems all the way from
applications to Operating System

 Tool for real time performance analysis
 Designed to be safe to use in production environments, no

need to reproduce the problems in test environment
 Open source community project with active contributions from

IBM, Intel, Hitachi, Red Hat and various community members
 A growing set of tracing applications are available on the web.
 Custom applications can be developed quickly using a familiar

scripting language
 Native code, no interpreter and highly parallel execution
 An extensible platform and enabler for developing lots of new

tools
 Enhanced through customer and development-community

involvement

IBM Linux Technology Center

© 2007 IBM Corporation7

SystemTap

SystemTap

Realtime
performance

analysis
Capacity planning

Functional problem
analysis (debugging)

Low overhead and
safe for

production
systems

Easy to use by
system

administrators
Continuous

Performance
monitoring

On Demand
probing

IBM Linux Technology Center

© 2007 IBM Corporation8

SystemTap Safety features

 Leverages well tested tool chain, no new compiler or interpreter
 Reuse well tested kernel features
 Language Safety features:

 No dynamic memory allocation
 Types and type conversions limited
 Limited pointer operations

 Builtin safety checks
 Infinite loops and recursion
 Invalid variable access
 Division by zero
 Restricted access to kernel memory
 Array bound checks
 Version compatibility checks

IBM Linux Technology Center

© 2007 IBM Corporation9

SystemTap General Features

 Available on most common platforms
 Bundled with common enterprise distributions
 Low overhead and highly parallel execution
 Cached scripts runs are supported
 Cross compile facility is available
 GUI and command line interfaces are supported
 Fast in kernel data aggregation facilities
 Data output in both text and binary forms

IBM Linux Technology Center

© 2007 IBM Corporation10

SystemTap Availability

S/390

http://www.suse.com/us/index.html
http://fedora.redhat.com/

IBM Linux Technology Center

© 2007 IBM Corporation11

What can SystemTap do for you TODAY?

VMM Scheduler

Kernel

Platforms

Filesystems Loadable
modulesNetworking

I/O subsystem

Systemcalls

LockingProcess

Device Drivers/
ISR

Other Kernel Subsystems

Architectures supported
IA 32 X86_64 PPC 64 S390xIA64

IBM Linux Technology Center

© 2007 IBM Corporation12

What will SystemTap do for you tomorrow?

Architectures supported

VMM Scheduler

Kernel
Space

Platforms

Filesystems Loadable
modulesNetworking

I/O subsystem

Systemcalls

LockingProcess

Device Drivers/
ISR

Other Kernel Subsystems

Application
Space

User Libs/shared libraries/libc

C/C++ apps

Perl/Python Apps

Popular enterprise apps in C/C++

Java Apps PHP Other interpreted
apps

IA 32 X86_64 PPC 64 S390xIA64

IBM Linux Technology Center

© 2007 IBM Corporation13

Example End User Script

global reads
probe begin {
 printf(“probe beginning\n”)
}
probe syscall.read {
 reads[execname()] <<< count
}
probe end {
 foreach (prog_name in reads) {
 printf("Name: %s, # Reads: %d, Total Bytes: %d, Avg: %d\n",
 prog_name, @count(reads[prog_name]),
 @sum(reads[prog_name]), @avg(reads[prog_name]))
 }
}
Language features:
 Global variables and builtin functions
 Associative arrays
 Aggregation operations and functions
 Pre-defined probe library or tapsets for common probe points
 Familiar hierarchical “dot” notation for probe specification
 Probe entry and termination call-backs

IBM Linux Technology Center

© 2007 IBM Corporation14

TapSets

 A TapSet defines:
Probe Points: a set of instrumentation points for a particular subsystem
Data values that are available at each probe point.

 Written by experts
 Tested and packaged with SystemTap
 Tapsets are currently available for major areas of the kernel

like process, systemcalls , scheduler, filesystem, networking
etc.

 Currently Tapsets define thousands of probe points

IBM Linux Technology Center

© 2007 IBM Corporation15

How SystemTap works?

TapSet library

probe kernel module

probe output

parse

elaborate

translate to C, compile

load module, start probe

extract output, unload

probe script

IBM Linux Technology Center

© 2007 IBM Corporation16

SystemTap GUI

 An Eclipse-based application intended to ease the use of
SystemTap.

 Both an Integrated Development Environment for the
SystemTap, as well as a data visualization and analysis
tool

 Contains three unique perspectives, each with a different
purpose – IDE, Graphing and Dashboard

IBM Linux Technology Center

© 2007 IBM Corporation17

SystemTap GUI – IDE Perspective

 Editor for creating, editing and testing SystemTap
scripts, including code assist, syntax highlighting, and
script execution

 Browsers:
1. Tapset Browser – Browse and insert skeleton probes, learn

available parameters.
2. Builtin Function – Browse tapset functions/return types.
3. Source Browser– Navigate and view source

files, and using those files, place probes at arbitrary code locations

IBM Linux Technology Center

© 2007 IBM Corporation18

SystemTap GUI – IDE Perspective

IBM Linux Technology Center

© 2007 IBM Corporation19

SystemTap GUI – Graphing Perspective

 Allows users to view the output of their SystemTap scripts
in graph form

 Users can run an open script, import existing data from a
previous run, export data from a new run, or save the
graph as an image

 Features include zooming, scrolling along the timeline,
and optional legends, gridlines, etc

IBM Linux Technology Center

© 2007 IBM Corporation20

SystemTap GUI – Graphing Perspective

IBM Linux Technology Center

© 2007 IBM Corporation21

SystemTap GUI – Dashboard Perspective

 Enables users to import, load, and run predefined scripts.
 Allows the execution and viewing of 1 to 8 different graphs

at one time, gives ideal perspective for entire system
analysis.

IBM Linux Technology Center

© 2007 IBM Corporation22

SystemTap GUI – Dashboard Perspective

IBM Linux Technology Center

© 2007 IBM Corporation23

Real Life Uses of SystemTap

 SCSI request size mismatch
 UDP datagram loss
 Top I/O by users and processes

IBM Linux Technology Center

© 2007 IBM Corporation24

SCSI Request Sizes

Problem
In a benchmark run, we observed a mismatch between expected and
actual SCSI I/O counts.

Solution
Create a simple SystemTap script to track the counts and sizes of SCSI
requests to a specific device.

IBM Linux Technology Center

© 2007 IBM Corporation25

SCSI Request Sizes – scsi_req.stp
Thanks to Allan Brunelle from HP
global rqs, host_no, channel, id, lun, direction
probe begin
{
 host_no = 0
 channel = 1
 id = 1
 lun = 0
 direction = 1 /* write */
}
probe scsi.iodispatching
{
 if (data_direction != direction) next
 if (lun != lun) next
 if (id != dev_id) next
 if (channel != channel) next
 if (host_no != host_no) next
 rqs[req_bufflen / 1024]++
}
probe end
{
 printf("ReqSz(KB)\t#Reqs\n")
 foreach (rec+ in rqs)
 printf("%8d\t%5d\n", rec, rqs[rec])
}

IBM Linux Technology Center

© 2007 IBM Corporation26

SCSI Request Sizes – output

stap scsi_req.stp
ReqSz(KB) #Reqs
 4 3
 8 2
 12 1
 28 1
 44 1
 88 1
 164 1
 204 1
 216 1
 308 1
 448 1
 508 1
 512 36

IBM Linux Technology Center

© 2007 IBM Corporation27

UDP Datagram Loss

Problem
A customer wanted to see UDP statistics for both the sending and receiving
sides and how many UDP datagrams were dropped.
Existing tools don’t provide all of this data:

 netstat -su doesn’t show how many datagrams are dropped when
sending.

 iptraf doesn’t show statistics on datagram loss.
Solution
Create a SystemTap script that records how many UDP datagrams have been sent and
received and how many were dropped.

IBM Linux Technology Center

© 2007 IBM Corporation28

UDP Datagram Loss - udpstat.stp
Thanks to Eugene Teo from Red Hat
global udp_out, udp_outerr, udp_in, udp_inerr, udp_noport
probe begin {
 /* print header */
 printf("%11s %10s %10s %10s %10s\n",
 "UDP_out", "UDP_outErr", "UDP_in", "UDP_inErr", "UDP_noPort")
}
 probe kernel.function("udp_sendmsg").return {
 $return >= 0 ? udp_out++ : udp_outerr++
}
 probe kernel.function("udp_queue_rcv_skb").return {
 $return == 0 ? udp_in++ : udp_inerr++
}
 probe kernel.function("icmp_send") {
 /* destination not reachable and port not reachable */
 if (type == 3 && code == 3) {
 /* UDP Protocol = 17 */
 if (skb_in->nh->iph->protocol == 17)
 udp_noport++
 }
}
/* print data every sec */
probe timer.ms(1000){
 printf("%11d %10d %10d %10d %10d\n",
 udp_out, udp_outerr, udp_in, udp_inerr, udp_noport)
}

IBM Linux Technology Center

© 2007 IBM Corporation29

UDP Datagram Loss - udpstat.stp output

 UDP_out UDP_outErr UDP_in UDP_inErr UDP_noPort 0 0 0 0 0
 0 0 0 0 0 4 0 0 0 0 5 0 0 0 0
 5 0 0 0 0 6 0 1 0 0
 7 0 1 0 0 7 0 1 0 0
 7 0 1 0 2 7 0 1 0 2 8 0 1 0 2 9 0 2 0 5 10 0 2 0 6
 11 0 2 0 6 15 0 5 0 6
 19 1 9 0 6 19 1 10 0 6
 19 1 10 0 6 19 1 10 0 6 19 1 10 0 6

IBM Linux Technology Center

© 2007 IBM Corporation30

Top IO Users by User ID

Problem
Which user is doing the most IO on the system? iostat does not provide
statistics on a per user basis.

Solution
Write a simple SystemTap script that probes file system read() and write() and
records the bytes of IO for each user.

IBM Linux Technology Center

© 2007 IBM Corporation31

uid-iotop.stp
global reads, writes
function print_top () {
 cnt=0
 printf ("%-10s\t%10s\t%15s\n", "User ID", "KB Read", "KB Written")
 foreach (id in reads-) {
 printf("%-10s\t%10d\t%15d\n", id, reads[id]/1024,

 writes[id]/1024)
 if (cnt++ == 5)
 break
 }
 delete reads
 delete writes
}
 probe kernel.function("vfs_read") {
 reads[sprintf("%d", uid())] += count
}
probe kernel.function("vfs_write") {
 writes[sprintf("%d", uid())] += count
}
print top 5 IO users by uid every 5 seconds
probe timer.ms(5000) {
 print_top ()
}

IBM Linux Technology Center

© 2007 IBM Corporation32

uid-iotop.stp output

User ID KB Read KB Written
504 14237 3163
505 11208 929
502 11175 889
503 12469 866
0 1778 183

IBM Linux Technology Center

© 2007 IBM Corporation33

Top IO Users by Process ID

Problem
Which process is doing the most IO on the system?

Solution
Convert the uid-iotop.stp script to record IO for each process instead of each
user. Changes shown on next slide in bold italics. Ease of changes
demonstrate the flexibility of SystemTap.

IBM Linux Technology Center

© 2007 IBM Corporation34

pid-iotop.stp
global reads, writes
function print_top () {
 cnt=0
 printf ("%-10s\t%10s\t%15s\n", “Process ID", "KB Read", "KB

Written")
 foreach (id in reads-) {
 printf("%-10s\t%10d\t%15d\n", id, reads[id]/1024,

writes[id]/1024)
 if (cnt++ == 5)
 break
 }
 delete reads
 delete writes
}
probe kernel.function("vfs_read") {
 reads[sprintf("%d", pid())] += count
}
probe kernel.function("vfs_write") {
 writes[sprintf("%d", pid())] += count
}
print top 5 IO users by pid every 5 seconds
probe timer.ms(5000) {
 print_top ()
}

IBM Linux Technology Center

© 2007 IBM Corporation35

pid-iotop.stp output

Process ID KB Read KB Written
13839 2827 25
10608 1318 303
10587 1298 314
10627 1219 454
10633 1219 438

IBM Linux Technology Center

© 2007 IBM Corporation36

Future Work

 Support for analyzing compiled applications
 Support for probing interpreted applications like Java
 Support for watch point probes
 Support for processor performance monitoring hardware.
 Enhanced GUI
 Speculative tracing
 Flight recorder

IBM Linux Technology Center

© 2007 IBM Corporation37

Conclusions

 One tool: SystemTap is a new performance tool for
analyzing systemwide performance problems.

 Safe: Safety is builtin to use in production systems.
 Realtime: Low overhead suitable for continuous

performance monitoring production systems.
 Easy: Easy to use by all levels of users with its familiar

scripting language and intuitive GUI.
 Effective: Identify bottlenecks all the way from

applications to OS in hours vs days to weeks.
 On Demand: New probe points can be added on demand,

not limited to what is shipped.
 Available: Available on most common h/w platforms and

enterprise distributions.

IBM Linux Technology Center

© 2007 IBM Corporation38

References
 SystemTap Project http://sourceware.org/systemtap/
 SystemTap GUI http://stapgui.sourceforge.net/
 SystemTap Wiki http://sourceware.org/systemtap/wiki

IBM Linux Technology Center

© 2007 IBM Corporation39

Disclaimers and Trademarks

 This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and the IBM logo are registered trademarks of
International Business Machines Corporation in the United
States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.
 Other company, product, and service names may be

trademarks or service marks of others.

IBM Linux Technology Center

© 2007 IBM Corporation40

 Q & A

