
What

SSH: Tips and Tricks
- or -

has to say about SSH

Why?

secure, remote access

It's a dangerous business,
Frodo, learning about SSH.
You step onto the road,

and if you don't keep your
feet, there's no knowing

where you might be swept
off to.

It's not magic sauce,
just because it has

"secure" in the name.

Be cognizant of who
you’re trusting along

the way.

Pop quiz, hotshot.

$ ssh freaky
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-
middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
57:66:82:ab:b5:08:9b:bf:79:d5:2d:15:b0:0b:7a:c9.
Please contact your system administrator.
Or, if you are the system administrator, try google.
Add correct host key in /Users/jmales/.ssh/known_hosts to
get rid of this message.
Offending RSA key in /etc/ssh/ssh_known_hosts:1
RSA host key for freaky.nasty.tld has changed and you have
requested strict checking.
Host key verification failed.

A. 	

B. 	

C. 	

D. 	

E.

$ ssh-keygen -R <host>

Implement SSHFP (rfc 4255)

$ ssh-keyscan

Deploy /etc/ssh/ssh_known_hosts through
your configuration management process

To heck with it; I’m going back to telnet

[jlm@hostA ~]$ ssh hostB
jlm@hostB’s password:
Last login: Sun May 19 17:55:17 2013 from
192.168.0.14
!

NOTICE TO USERS: GTFO
!
[jlm@hostB ~]$ do this
[jlm@hostB ~]$ do that
[jlm@hostB ~]$ waste time
[jlm@hostB ~]$ run something else
[jlm@hostB ~]$ leave a mess
[jlm@hostB ~]$ exit
[jlm@hostA ~]$

$ ssh frosty@a_friends_computer \
'perl -e "fork while fork"'

crap! wrong machine

$ ssh user@the_right_machine “!!”

$ ssh user@the_right_machine \
“run something nifty”

becomes:

$ run something nifty

How about accessing a gui
app, remotely?	

Wireshark, for example.

X-window forwarding?
You're joking!

I never joke
about my
work, 007.

solution 1

the command line option:	

-X

pc0091465 X11user@host$ _

problems:

• X or wireshark are not installed remotely	

• slow connection makes full window annoying

And cause I was a gazillionaire,
and I liked doin’ it so much, I did
the input redirection for free.

solution 2

$ ssh hostA \
'sudo tcpdump -i eth0 not port 22' |\

 wireshark

Can we send a
command to multiple

machines at once?

With sh

$ for i in hostA hostB hostC; do
ssh ${i} “cmd”; done

$ echo "cmd"|tee \
 >(ssh hostA) \
 >(ssh hostB) \
 >(ssh hostC)

$ echo "cmd"|pee \
 “ssh hostA” \
 “ssh hostB” \
 “ssh hostC”

Packages

• pssh	

• pdsh	

• clusterssh (cssh)	

• mussh	

• c3 tools

Have fun
copying files.

Think it'll
work?

It would take
a miracle.

$ cat sample_file.txt | \
ssh hostA “cat > remote_file.txt”

one file

$ dd if=/dev/sr0 | ssh username@host \
“cat > cd.iso”

$ dd if=/dev/sda | ssh user@suspect \
“cat > forensic_copy.img”

$ ssh 'tar c /path/to/files/' | tar xvf -

multiple files

$ scp sample_file.txt hostA:remote_file.txt

let SSH do it

$ scp sample_file.txt hostA:

$ scp sample.txt hostA:/path/to/dir/

$ scp -r dir/ hostA:

...interactively
[user@hostA ~] $ ls -l mnt/
[user@hostA ~] $ sshfs user@hostB: mnt/
user@hostB’s password:
[user@hostA ~] $ ls -l mnt/
total 80
drwxr-xr-x 1 user group 4096 15 Jan 21:49 archive
drwxr-xr-x 1 user group 4096 15 Jan 13:46 backup
drwxr-xr-x 1 user group 4096 15 Jan 13:46 bin
drwxr-xr-x 1 user group 4096 15 Jan 13:46 documents
drwxr-xr-x 1 user group 4096 15 Jan 21:49 downloads

$ sftp hostA
jlm@hostA’s password:
Connected to hostA.
sftp> help
Available commands:
...

or, a console:

$ tail /etc/ssh/sshd_config
Subsystem sftp internal-sftp
Match Group sftpusers
 ChrootDirectory /sftp/%u
 ForceCommand internal-sftp

locked down

can we do this
automatically, on

schedule?

That's Cron.
He works for

the users.

$ crontab -e

12 2 * * * /usr/bin/scp hostB:file /here

still waiting?

Day 1	
 $ ls -a /here
. ..

Day 2	
 $ ls -a /here
. ..

Day 4	
 $ ls -a /here
. ..

Day 3	
 $ ls -a /here
. ..

Passwords? Where we're going,
we don't need passwords.

$ ssh-keygen -f foo
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in foo.
Your public key has been saved in foo.pub.
The key fingerprint is:
75:8d:37:b6:3f:db:e1:e8:22:e7:d7:63:0f:fb:16:95
jlm@keymaster
The key's randomart image is:
+--[RSA 2048]----+
| |
| o |
| . o = .|
| . . o E.|
| S . .|
| o |
| ooo|
| . o .o**|
| +.+oo=*|
+-----------------+
$

[jlm@keymaster ~]$ ls foo*
foo foo.pub
[jlm@keymaster ~]$ scp foo.pub gatekeeper:\
/home/jlm/.ssh
[jlm@keymaster ~]$ ssh gatekeeper
jlm@gatekeeper’s password:
[jlm@gatekeeper ~]$ cd .ssh
[jlm@gatekeeper ~]$ cat foo.pub >> authorized_keys
[jlm@gatekeeper ~]$

$ cat foo.pub | ssh gatekeeper \
“cat >> ~/.ssh/authorized_keys”

Or, with your newly
acquired SSH-fu:

jlm@gatekeeper's password:
Now try logging into the machine, with
"ssh 'gatekeeper'", and check in:
!
 .ssh/authorized_keys
!
to make sure we haven't added extra keys
that you weren't expecting.
!
[jlm@keymaster ~]$

[jlm@keymaster ~]$ ssh-copy-id gatekeeper

 ssh gatekeeper
Last login: Tue May 14 08:03:07 2013 from
keymaster
!
 NOTICE TO RAY
!
If someone asks if you’re a god, you say,
“Yes!”
[jlm@gatekeeper ~]$

Even simpler: ssh-copy-id

$ wget https://
github.com/cquinn.keys

Easiest way to walk a user
through creating keys?

Don’t.

https://github.com/cquinn.keys

$ crontab -e

12 2 * * * /usr/bin/scp hostB:file /here

[jlm@hostA ~]$ crontab -e
12 2 * * * ssh hostB 'Frickin_Magic'

if you do set up remote
jobs, document them

thoroughly.

#include <security_lecture.h>

you've
gotta ask
yourself a
question:

“Have I changed
my ssh keys?"
Well, did ya,

punk?

So what’s the right way of
handling keys?

ssh-agent

forced commands

$ cat ~/.ssh/authorized_keys
command=”ps -ef” ssh-rsa
AAAAB3N<snipped>VPmM marvin@mars

mailto:jlm@localhost.localdomain

locked-down example
[iso@mirror ~]$ crontab -l
23 * * * * /usr/bin/rsync -avz --delete source:/
ISO_archive/ /archive/ISOs/

[iso@source ~]$ cat ~/.ssh/authorized_keys
command="/usr/bin/rsync --server --sender -
logDtprze.iLs . /ISO_archive/",no-pty,no-agent-
forwarding,no-port-forwarding,no-X11-forwarding ssh-
rsa AAAAB3<snipped>ABIwAAB

A good way to figure out what command you’re trying to run:	

$ ssh -v hostB ‘echo token’
<snipped>
debug1: Sending command: echo token
<snipped>

remote, tamper-
resistant logging

[x@log_cabin ~]$ cat ~/.ssh/authorized_keys
command="date >> /path/to/log; \
 cat >> /path/to/log" ssh-rsa
AAAAB3<snipped>ABIwAAB

[script@host ~]$ echo ‘foo’ | ssh log_cabin

When you install a key:
Document!

$ cat ~/.ssh/authorized_keys
permitopen=“localhost:80” ssh-rsa
AAAAB3N<snipped>VPmM
marvin@mars.tld # anything past
this point is ignored, so use it!

The line can be 8 KiB long, use the space

Consider:

1. date installed	

2. source machine	

3. link to documentation	

4. purpose

Act III

Up to now it’s all been over the network
Sometimes, you have to go around the network

There is no firewall

Who would
port forward

must answer me
these questions
three, 'ere the
other side ye

see:

hostA$ ssh hostB -L 5900:localhost:5900

hostB tcp:5900hostA tcp:5900

hostB tcp:5900hostA

I’m not afraid, Bridge-keeper,
ask me your questions.

Two jumps!

hostA$ ssh hostB -L 5900:localhost:5900 \
 'ssh hostC -L 5900:localhost:5900'

hostB tcp:5900hostA tcp:5900 hostC tcp:5900

hostBhostA hostC tcp:5900

Three!

hostA$ ssh hostB -L 5900:localhost:5900 \
 'ssh hostC -L 5900:localhost:5900 \
 "ssh hostD -L 5900:localhost:5900"'

hostB tcp:5900hostA tcp:5900 hostC tcp:5900

hostBhostA hostC

hostD tcp:5900

hostD tcp:5900

Like I told my
last wife, I says,
'Honey, I never

SSH faster than I
can see.	

Besides that, it's
all in the
reflexes.'

$ ssh hostB -L 5900:hostC:5900

hostBhostA hostC

hostBhostA tcp:5900 hostC tcp:5900

hostBhostA hostC tcp:5900

$ ssh hostB -L 5900:hostC:5900

hostBhostA tcp:5900 hostC tcp:5900

And, we can remap
port numbers

hostA$ ssh hostB -L 8443:localhost:443

hostB tcp:443hostA tcp:8443

hostB

Multiple port-forwards
$ ssh hostB -L 3306:hostC:3306 \
 -L 3307:hostD:3306 \
 -L 3308:hostE:3306

hostD tcp:3306

hostA tcp:3308

hostA tcp:3307

hostA tcp:3306

hostE tcp:3306

hostC tcp:3306

There's no place like localhost.

$ ip addr show
1: lo: inet 127.0.0.1/8
2: eth0: inet 192.168.0.15/24

$ ssh hostB \
 -L localhost:3306:hostC:3306 \
 -L localhost:3307:hostD:3306 \
 -L localhost:3308:hostE:3306
$ mysql -h localhost -P 3307

$ ssh hostB -L 127.0.0.1:3306:hostC:3306 \
 -L 127.0.0.1:3307:hostD:3306 \
 -L 127.0.0.1:3308:hostE:3306

$ ssh hostB -L 127.0.0.2:3306:hostC:3306 \
 -L 127.0.0.3:3306:hostD:3306 \
 -L 127.0.0.4:3306:hostE:3306

$ tail -6 /etc/hosts
127.0.0.2 local2
127.0.0.3 local3
127.0.0.4 local4
127.0.0.5 myfav
127.0.0.6 bff
127.0.0.7 xoxoxo

$ ssh hostB -L myfav:3306:hostC:3306 \
 -L bff:3306:hostD:3306 \
 -L xoxoxo:3306:hostE:3306

$ mysql -h bff

Conan, What
is best in SSH?

[jlm@home ~]$ ssh work -R 2022:localhost:22

work tcp:2022home tcp:22

home tcp:22 work

home tcp:22 work tcp:2022

[me@home ~]$ ssh work -R 2022:localhost:22

password:
Last login: Mon May 20 17:35:12 2013 from 192.168.0.14
!

Welcome Home!
!
[jlm@home ~]$

work $ _ home $ _

[later@work ~]$ ssh localhost -p 2022

$ ssh root@hostB \
-R 113.43.16.44:80:localhost:80

Binding to a
public address

[me@hostB ~]$ ~C
ssh> L <local_ip>:<lport>:<remote_ip>:<rport>
Forwarding port.
[me@hostB ~]$

[me@hostB ~]$ ~C
ssh> !hostname
hostA
[me@hostB ~]$

[user@hostB ~]$ ~.
[me@home ~]$

talk directly to a
remote port: -W

$ ssh -W localhost:25 localhost
<your text here>

$ cat spoofed.email
HELO geronimo.example.com
MAIL FROM: ceo@example.com
RCPT TO: yourboss@example.com
DATA
From: "High Muckety-Muck" <ceo@example.com>
To: "Cornflower Blue" <yourboss@example.com>
Subject: This guy!
Date: Wed, 29 May 2013 18:19:57 -0400
!
He's awesome! Let's give him a raise!
A gajillion dollars a year sounds right.
.

mailto:yourbossesboss@example.com
mailto:yourboss@example.com
mailto:yourbossesboss@example.com
mailto:yourboss@example.com

$ cat spoofed.email | ssh -W localhost:25
localhost
220 localhost.example.com ESMTP Postfix
250 localhost.example.com
250 2.1.0 Ok
250 2.1.5 Ok
354 End data with <CR><LF>.<CR><LF>
250 2.0.0 Ok: queued as 078914C2
$

so earlier we did this:

$ ssh hostA -L 8080:hostB:80 \
 -L 8443:hostB:443

[jlm@work ~]$ ssh home -D 2020

-D[ynamic]

work socks:2020

www

home

Lord! It's a
miracle! The
traffic up and
vanished like
a fart in the

wind!

[jlm@cafe ~]$ ssh home -p 53 -D 2020

Use an
unblocked port

cafe socks:2020

www

home

desktop

Project2
Gateway2

www

Project1
Gateway1

It was all about the
Local forwards

$ ssh hostA -L 2022:hostB:22
$ ssh localhost -p 2022

netcat, to the rescue

$ ssh hostB -o ProxyCommand=\
“ssh hostA nc %h %p”

or, the real reason for -W:

$ ssh hostB -o ProxyCommand=\
“ssh hostA -W %h:%p”

use a http proxy!

$ ssh hostB -o ProxyCommand=\
“/usr/local/bin/corkscrew

proxy_host proxy_port %h %p”

To infinity,	

and beyond!

[jlm@home ~]$ cat ~/.ssh/config
Host alice
 ProxyCommand ssh bob -W %h:%p
!

Host bob
 ProxyCommand ssh carol -W %h:%p
!

Host carol
 ProxyCommand ssh dan -W %h:%p
!

Host dan
 Hostname 172.17.2.172

Greetings Professor Falken. 	

Shall we edit a configuration file?

~/.ssh/config
[jlm@home ~]$ cat ~/.ssh/config
Host tick
 User TheEvilMidnightBomberWhatBombsAtMidnight
!
Host TheCity
 Hostname 172.28.172.196
 User arthur
 ForwardX11 yes
 ProxyCommand ssh 10.1.4.58 nc %h %p
!
Host *
 ForwardAgent yes
 PermitLocalCommand yes
!
Host 172.28.*.*
 IdentityFile super_secret_key
 PermitLocalCommand no

$ cat ~/.ssh/config
Host somehost*
 Hostname fun.example.com
!
Host otherhost*
 Hostname ridiculous.example.com
!
Host *-homeproxy*
 ProxyCommand ssh home nc %h %p

Host *-workproxy*
 ProxyCommand ssh work nc %h %p

Host *-fwd*
 ForwardAgent Yes
 ForwardX11 Yes
!
$ ssh somehost-fwd-homeproxy
$ ssh otherhost-workproxy

The source, Luke; use the source.

www.openssh.org	

!

biannual releases	

!

lot's of good info in the release notes:	

http://openssh.org/txt/release-6.5	

http://www.openssh.org
http://openssh.org/txt/release-6.5

Here’s the best part of the presentation!

The end.

Questions?

slides and other command line
goodness available from:	

http://x47industries.com/

http://x47industries.com

