Reallylarge scale
systems configuration

Config Management @ Facebook
Phil Dibowitz

Who am I?

Configuration Management Experience

* Co-authored Spine

e Authored Provision

Scale Experience

* Ticketmaster, Google, Facebook

Passionate about scaling configuration management

Scaling

http://coolinterestingstuff.com/amazing-space-images/

Scaling Configuration Management

How many homogeneous systems can you maintain?
How many heterogeneous systems can you maintain?
How many people are needed?

Can you safely delegate delta configuration?

The Goal

ke o ‘f

/TP Drath|d vani orq/soorts/qoal 201‘*2;%1: be/',/tiful-qame-is-back/
T ! e TR

The Goal

* 4 people
* Tens of thousands of heterogeneous systems

* Service owners own/adjust relevant settings

What did we need?

1. Basic
Scalable

Building
Blocks

Basic Scalable Build Blocks

Distributed! Everything on the client (duh!)
Deterministic! | The system you want on every run
ldempotent! Only the necessary changes
Extensible! Tied into internal systems

Flexible! No dictated workflow

http://www.greenbookblog.org/2012/03/21/big-data-opportunity-or-threat-for-market-research/
http://www.greenbookblog.org/2012/03/21/big-data-opportunity-or-threat-for-market-research/

Configuration as Data

| want

® shared mem

® DSRvVIp

® core files somewhere else
® servicerunning

® less/more/no nscd caching

http://www.flickr.com/photos/laurapple/7370381182/

Configuration as Data

Service Owners don’t know:
® How to configure DSR
® Optimal sysctl settings
® Network settings

®* Authentication settings

pd

http://livelovesweat.wordpress.com/2011/12/07/the-importance-of-flexibility/

Flexibility

® Adapt toour workflow
® Super-fast prototyping
® Internal assumptions can be changed - easily

® Extend in new ways - easily

Flexibility - Example

* Template /etc/sysctl.conf

® Build a hash of default sysctls

®* Provide these defaults early in “run”

®* Let any engineer munge the bits they want

* /etc/sysctl.conf template interpolated “after”

RS
I
|
L

‘ﬂm.ﬂ\x

http://www.flickr.com/photos/75905404@N00/7126147125/

Many Options

Looked at many options, chose 3 for deep look:
® Spine

®* Puppet

® Chef

Other options exist: bcfg2, salt, cfengine3, etc.

Why Chef?

Easier to see from a problem with Chef

Chef: The node.save() problem

* node.save() wouldn’t scale
* Can’t send that much data from, say, 15k servers

every 10-15 minutes (or 5, or 2)

* Standard solution: disable ohai plugins
* Still too much data

* Limited the tool unnecessarily

Chef: The node.save() problem

¢ | want all ohai data for run
® |don’t need it on the chef server
® Solution: use it, but don’t send it!

® Patch Chef? Feature Request?

Chef: whitelist node attrs

® New cookbook re-opens Chef::Node.save
®* Deletes non-white-listed attrs before saving
® Have as much data as you want during the run

® We send < 1kb back to the server!

Code available:

https://github.com/opscode-cookbooks/whitelist-node-attrs

Chef: whitelist node attrs

class Chef
class Node
alias method :0ld save, :save
Overwrite chef’s node.save to whitelist. doesn’t get “later” than this
def save
Chef::Log.info(“Whitelisting node attributes”)
whitelist = self[:whitelist].to hash

self.default attrs = Whitelist.filter(self.default attrs, whitelist)
self.normal attrs = Whitelist.filter(self.normal attrs, whitelist)
self.override attrs = Whitelist.filter(self.override attrs, whitelist)
self.automatic attrs = Whitelist.filter(self.override attrs, whitelist)
old save

end

end
end

Chef: whitelist node attrs

Well... that’s flexible!

Chef: The method_missing problem

node.foo('bar')

* Ruby: “Is there a method foo () ?”

* Chef: “If not, is there an attribute foo ?”
* “If not, create; assign bar”

* OK for...
node['foo'] = 'bar'
node.foo = bar

* But imagine:

node.has key('foo') want has key? ()

Chef: The method_missing problem

class Chef::Node
def method missing(method, *args)
Chef::Log.warn(“FB Chef Tweak: Not assuming” +

“ missing method is an attr!”)
Object.send(:method missing, method, args)
end

end

Chef: The method_missing problem

Again... super flexible!

Our desired workflow

Our Desired Workflow

®* Provide API for anyone, anywhere to extend configs by

munging data structures

®* Engineers don’t need to know what they’re building on, just
what they want to change

® Engineers can change their systems without fear of changing
anything else

®* Testing should be easy

* And...

Moving Idempotency Up

* |[dempotent records can get stale
* Remove cron/sysctl/user/etc.

* Never gets removed => stale entries

* |[dempotent systems control setof configs
* Remove cron/sysct/user/etc.

* No longer rendered in config

ldempotent Records vs. Systems

This is a pain:

delete after 3271713

cron 'tmp_cleanar' do cron 'tmp_cleaner' do

11

minute 'S5’ minute 'S
. command 'Jfusr/local /bbin/tmp_cleaner'
action :delete

end

user 'coolsoftd' do
uid 512 uid 512
home ' /var home ' /var/coolsof
action :c

and end

ldempotent Records vs. Systems

This is better:

Case Study 1: sysctl

* fb_sysctl/attributes/default.rb

* Provides defaults looking at hw, kernel, etc.
* fb_sysctl/recipes/default.rb

* Defines a template
* fb_sysctl/templates/default/sysctl.erb

* 3-line template

Case Study 1: sysctl

Template:

Generated by Chef, do not edit directly!
<%- node['fb']['fb sysctl'].keys.sort.each do

| key| 2>
<%= key %> = <%= node['fb']['fb sysctl'][key] %>
<%- end 3>

Result:
Generated by Chef, do not edit directly!

net.ipvé.conf.ethO.accept ra =1

net.ipvé.conf.etho. accept ra pinfo
net.ipvé6.conf.eth0.autoconf = 0

Case Study 1: sysctl

In the cookbook for the DB servers:

database/recipes/default.rb

Case Study 1: sysctl

How does this help us scale?

 Significantly better heterogenous scale
* Fewer people need to manage configs
* Delegationissimple

Case Study 2: DSR

Case Study 2: DSR

 DSRVIPs are hard:

* L2 networks: dummyX (which one?!)

* L3 networks: tunlo

* V6 vips: ip6tnlo

» May need special routing considerations
* For us:

 node.add_dsr_vip(‘10.1.1.2’)

Case Study 2: DSR

How does this help us scale?
* Far fewer people

[only add_dsr_vip() author(s) needs to understand the details]

* More heterogeneous systems

* Delegation is easy

Other Examples
Want IPv6?

node.default['fb']['fb networking']['want ipv6'] = true

Want to know what kind of network?

node.is layer3?()

New cronjob?
node.default['fb']['fb cron']['Jobs'][' 'myjob'] = {

|time| => l*/15 * % * *l,

'command' => 'thing',

'user' => 'myservice',

Our Chef Infrastructure

OSC and OPC

Our Chef Infrastructure - Customizations

o Stateless Chef Servers

* No search

* No databags
o Separate Failure Domains
* Tiered Model

Production: Global

e Cluster 1

|

Cluster 2

Cluster 3

Cluster 4

Production: Cluster

(Grocery Delivery)
Chef BE 1 Chef BE 2

(Grocery Delivery)

SVN

o o LB
Chef FE 1 Chef FE 2 Chef FE 3
o o LB

- T § NN § T g I SS————

Assumptions

» Serveris basically stateless
* Node data not persistent
* No databags
- grocery_delivery keeps roles/cookbooks in sync

* Chefonly knows about the clusteritisin

Implementation Details

 Persistent data needs to come from FB SORSs
* Ohaiistied into necessary SORs

* Runlistis forced on every run

Implementation Details: Client

* Report Handlers feed data into monitoring:
* Last exception seen

* Success/Failure of run

* Number of resources

*Time to run

*Time since last run

* Other system info

Implementation Details: Server

* Fed into monitoring
* Stats (postgres, authz [opc], etc.)
* Errors (nginx, erchef, etc.)
* More...

* Script open source:

* https://github.com/facebook/chef-utils

o
e
e

/S =

FErreny

w7

=

Scale

* Clustersize ~10k+ nodes

* 15 minute convergence (14 min splay)
» grocery_delivery runs every minute

» Lots of clusters

Scale - OSS Chef

Let’s throw more than a cluster at
a Chef instance!

Scale - OSS Chef

T 82Y%

63%

Scale - Erchef (OPC)

Pre-erchef vs Post-erchef

Scale - Erchef (OPC)

10 K

standby backend

1

add nodes

start upgrade

0/2 D6PM Oct. 3 10/3 06AM 10/3 12PM 10/3 06PM Oct, 0/4 OBAM 10/4 12PM 10/4 06PM Oct, 5

Active BE::system.chefbe_num_nodes Active BE::system.cpu-idle Standby BE: :system.cpu-idle

| DONT ALWAYS TEST MY CODE

BUT WHEN | DO IT'S IN
PRODUCTION |

Testing: Desires

* Teston areal production host and pull dependencies
* Don’trely on people to clean up after themselves
* Should be easy!

e Can test before commit (commits go to prod)

Testing: Approach

* Multi-tenancy
* Everyone gets theirown “logical” chef server
* Could be approximated with OSC and some

automation

Testing: Approach

Create user and org
$ chef test init

Sync your repo toorg, test on a server
$ chef test test -s <server>

Run Chef on test server
server# chef-client

Fix bugs, re-sync
$ vim .. ; chef test upload

Lessons

* |dempotent systems >idempotent records

* Delegating delta config == easier heterogeneity
* Full programming languages > restrictive DSLs
* Scaleis more thanjusta number of clients

» Easy abstractions are critical

* Testing againstreal systems is useful and necessary

Summary

So how about those types of scale?

Summary

How many homogeneous systems can you
maintain?

How many heterogeneous systems can you
maintain?

How many people are needed?

Can you safely delegate delta configuration?

I ERLE

* Opscode

* Adam Jacob, Chris Brown, Steven Danna & the erchef team
* Andrew Crump

* foodcritic rules!
* Everyone I work with

* KC, Larry, David, Pedro, Bethanye

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

