

Firehose
Engineering
designing
high-volume
data collection
systems

Josh Berkus
HiLoad++, Moscow

October 2011

Firehose Database
Applications (FDA)

(1) very high volume of data
input from many automated
producers

(2) continuous processing of
incoming data

Mozilla Socorro

Upwind

Fraud Detection System

Firehose Challenges

1. Volume

● 100's to 1000's facts/second
● GB/hour

1. Volume

● spikes in volume
● multiple uncoorindated sources

1. Volume

volume always grows over time

2. Constant flow

since data arrives 24/7 …

while the user interface can be
down, data collection can never
be down

ETL

2. Constant flow
● can't stop

receiving to
process

● data can
arrive out of
order

3. Database size

● terabytes to petabytes
● lots of hardware
● single-node DBMSes aren't enough
● difficult backups, redundancy,

migration
● analytics are resource-consumptive

3. Database size

● database growth
● size grows quickly
● need to expand storage
● estimate target data size
● create data ageing policies

3. Database size

“We will decide on a data
retention policy when we run out

of disk space.”
– every business user everywhere

4.

many components
= many failures

4. Component failure

● all components fail
● or need scheduled downtime
● including the network

● collection must continue
● collection & processing must

recover

solving firehose problems

socorro project

http://crash-stats.mozilla.com

Mozilla Socorro

collectors

processors

webservers

reports

socorro data volume

● 3000 crashes/minute
● avg. size 150K

● 40TB accumulated raw data
● 500GB accumulated metadata /

reports

dealing with volume

load balancers collectors

dealing with volume

monitor processors

dealing with size

data
40TB

expandible

metadata
views
500GB
fixed size

dealing with
component failure

● 30 Hbase
nodes

● 2 PostgreSQL
servers

● 6 load
balancers

● 3 ES servers
● 6 collectors
● 12 processors
● 8 middleware &

web servers

… lots of failures

Lots of hardware ...

load balancing &
redundancy

load balancers collectors

elastic connections

● components queue their data
● retain it if other nodes are down

● components resume work
automatically

● when other nodes come back up

elastic connections

collector

reciever local file queue

crash mover

server management

● puppet
● controls configuration of all servers
● makes sure servers recover
● allows rapid deployment of

replacement nodes

Upwind

Upwind

● speed
● wind speed
● heat
● vibration
● noise
● direction

Upwind

1. maximize
power
generation

2. make sure
turbine isn't
damaged

dealing with volume

each turbine:

90 to 700 facts/second

windmills per farm: up to 100

number of farms: 40+

est. total: 300,000 facts/second

(will grow)

dealing with volume

local
storage

historian analytic
database

reports

local
storage

historian analytic
database

reports

dealing with volume

local
storage

historian analytic
database

local
storage

historian analytic
database

master
database

multi-tenant partitioning

● partition the whole application
● each customer gets their own

toolchain

● allows scaling with the
number of customers

● lowers efficiency
● more efficient with virtualization

dealing with:
constant flow and size

historian
minute
buffer

hours
table

days
table

months
table

years
table

historian
minute
buffer

hours
table

days
table

months
table

historian
minute
buffer

hours
table

days
table

time-based rollups

● continuously accumulate
levels of rollup

● each is based on the level below it
● data is always appended, never

updated
● small windows == small resources

time-based rollups

● allows:
● very rapid summary reports for

different windows
● retaining different summaries for

different levels of time
● batch/out-of-order processing
● summarization in parallel

firehose tips

data collection must be:

● continuous
● parallel
● fault-tolerant

data processing must be:

● continuous
● parallel
● fault-tolerant

every component
must be able to fail

● including the network
● without too much data loss
● other components must

continue

5 tools to use

1. queueing software

2. buffering techniques

3. materialized views

4. configuration management

5. comprehensive monitoring

4 don'ts

1. use cutting-edge technology

2. use untested hardware

3. run components to capacity

4. do hot patching

firehose mastered?

Contact
● Josh Berkus: josh@pgexperts.com

● blog: blogs.ittoolbox.com/database/soup

● PostgreSQL: www.postgresql.org
● pgexperts: www.pgexperts.com

● Upcoming Events
● PostgreSQL Europe: http://2011.pgconf.eu/
● PostgreSQL Italy: http://2011.pgday.it/

The text and diagrams in this talk is copyright 2011 Josh Berkus and is licensed under the creative
commons attribution license. Title slide image is licensed from iStockPhoto and may not be
reproduced or redistributed. Socorro images are copyright 2011 Mozilla Inc.

